// ivectorbin/ivector-compute-plda.cc // Copyright 2013 Daniel Povey // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "ivector/plda.h" int main(int argc, char *argv[]) { using namespace kaldi; typedef kaldi::int32 int32; try { const char *usage = "Computes a Plda object (for Probabilistic Linear Discriminant Analysis)\n" "from a set of iVectors. Uses speaker information from a spk2utt file\n" "to compute within and between class variances.\n" "\n" "Usage: ivector-compute-plda [options] " "\n" "e.g.: \n" " ivector-compute-plda ark:spk2utt ark,s,cs:ivectors.ark plda\n"; ParseOptions po(usage); bool binary = true; PldaEstimationConfig plda_config; plda_config.Register(&po); po.Register("binary", &binary, "Write output in binary mode"); po.Read(argc, argv); if (po.NumArgs() != 3) { po.PrintUsage(); exit(1); } std::string spk2utt_rspecifier = po.GetArg(1), ivector_rspecifier = po.GetArg(2), plda_wxfilename = po.GetArg(3); int64 num_spk_done = 0, num_spk_err = 0, num_utt_done = 0, num_utt_err = 0; SequentialTokenVectorReader spk2utt_reader(spk2utt_rspecifier); RandomAccessBaseFloatVectorReader ivector_reader(ivector_rspecifier); PldaStats plda_stats; for (; !spk2utt_reader.Done(); spk2utt_reader.Next()) { std::string spk = spk2utt_reader.Key(); const std::vector &uttlist = spk2utt_reader.Value(); if (uttlist.empty()) { KALDI_ERR << "Speaker with no utterances."; } std::vector > ivectors; ivectors.reserve(uttlist.size()); for (size_t i = 0; i < uttlist.size(); i++) { std::string utt = uttlist[i]; if (!ivector_reader.HasKey(utt)) { KALDI_WARN << "No iVector present in input for utterance " << utt; num_utt_err++; } else { ivectors.resize(ivectors.size() + 1); ivectors.back() = ivector_reader.Value(utt); num_utt_done++; } } if (ivectors.size() == 0) { KALDI_WARN << "Not producing output for speaker " << spk << " since no utterances had iVectors"; num_spk_err++; } else { Matrix ivector_mat(ivectors.size(), ivectors[0].Dim()); for (size_t i = 0; i < ivectors.size(); i++) ivector_mat.Row(i).CopyFromVec(ivectors[i]); double weight = 1.0; // The code supports weighting but // we don't support this at the command-line // level yet. plda_stats.AddSamples(weight, ivector_mat); num_spk_done++; } } if (num_utt_done <= plda_stats.Dim()) KALDI_ERR << "Number of training iVectors is not greater than their " << "dimension, unable to estimate PLDA."; KALDI_LOG << "Accumulated stats from " << num_spk_done << " speakers (" << num_spk_err << " with no utterances), consisting of " << num_utt_done << " utterances (" << num_utt_err << " absent from input)."; if (num_spk_done == 0) KALDI_ERR << "No stats accumulated, unable to estimate PLDA."; if (num_spk_done == num_utt_done) KALDI_ERR << "No speakers with multiple utterances, " << "unable to estimate PLDA."; plda_stats.Sort(); PldaEstimator plda_estimator(plda_stats); Plda plda; plda_estimator.Estimate(plda_config, &plda); WriteKaldiObject(plda, plda_wxfilename, binary); return (num_spk_done != 0 ? 0 : 1); } catch(const std::exception &e) { std::cerr << e.what(); return -1; } }