// ivectorbin/ivector-plda-scoring-dense.cc // Copyright 2016-2018 David Snyder // 2017-2018 Matthew Maciejewski // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "util/stl-utils.h" #include "ivector/plda.h" namespace kaldi { bool EstPca(const Matrix &ivector_mat, BaseFloat target_energy, const std::string &reco, Matrix *mat) { // If the target_energy is 1.0, it's equivalent to not applying the // conversation-dependent PCA at all, so it's better to exit this // function before doing any computation. if (ApproxEqual(target_energy, 1.0, 0.001)) return false; int32 num_rows = ivector_mat.NumRows(), num_cols = ivector_mat.NumCols(); Vector sum; SpMatrix sumsq; sum.Resize(num_cols); sumsq.Resize(num_cols); sum.AddRowSumMat(1.0, ivector_mat); sumsq.AddMat2(1.0, ivector_mat, kTrans, 1.0); sum.Scale(1.0 / num_rows); sumsq.Scale(1.0 / num_rows); sumsq.AddVec2(-1.0, sum); // now sumsq is centered covariance. int32 full_dim = sum.Dim(); Matrix P(full_dim, full_dim); Vector s(full_dim); try { if (num_rows > num_cols) sumsq.Eig(&s, &P); else Matrix(sumsq).Svd(&s, &P, NULL); } catch (...) { KALDI_WARN << "Unable to compute conversation dependent PCA for" << " recording " << reco << "."; return false; } SortSvd(&s, &P); Matrix transform(P, kTrans); // Transpose of P. This is what // appears in the transform. // We want the PCA transform to retain target_energy amount of the total // energy. BaseFloat total_energy = s.Sum(); BaseFloat energy = 0.0; int32 dim = 1; while (energy / total_energy <= target_energy) { energy += s(dim-1); dim++; } Matrix transform_float(transform); mat->Resize(transform.NumCols(), transform.NumRows()); mat->CopyFromMat(transform); mat->Resize(dim, transform_float.NumCols(), kCopyData); return true; } // Transforms i-vectors using the PLDA model. void TransformIvectors(const Matrix &ivectors_in, const PldaConfig &plda_config, const Plda &plda, Matrix *ivectors_out) { int32 dim = plda.Dim(); ivectors_out->Resize(ivectors_in.NumRows(), dim); for (int32 i = 0; i < ivectors_in.NumRows(); i++) { Vector transformed_ivector(dim); plda.TransformIvector(plda_config, ivectors_in.Row(i), 1.0, &transformed_ivector); ivectors_out->Row(i).CopyFromVec(transformed_ivector); } } // Transform the i-vectors using the recording-dependent PCA matrix. void ApplyPca(const Matrix &ivectors_in, const Matrix &pca_mat, Matrix *ivectors_out) { int32 transform_cols = pca_mat.NumCols(), transform_rows = pca_mat.NumRows(), feat_dim = ivectors_in.NumCols(); ivectors_out->Resize(ivectors_in.NumRows(), transform_rows); KALDI_ASSERT(transform_cols == feat_dim); ivectors_out->AddMatMat(1.0, ivectors_in, kNoTrans, pca_mat, kTrans, 0.0); } } // namespace kaldi int main(int argc, char *argv[]) { using namespace kaldi; typedef kaldi::int32 int32; try { const char *usage = "Perform PLDA scoring for speaker diarization. The input reco2utt\n" "should be of the form ... and\n" "there should be one iVector for each segment. PLDA scoring is\n" "performed between all pairs of iVectors in a recording and outputs\n" "an archive of score matrices, one for each recording-id. The rows\n" "and columns of the the matrix correspond the sorted order of the\n" "segments.\n" "Usage: ivector-plda-scoring-dense [options] " " \n" "e.g.: \n" " ivector-plda-scoring-dense plda reco2utt scp:ivectors.scp" " ark:scores.ark ark,t:ivectors.1.ark\n"; ParseOptions po(usage); BaseFloat target_energy = 0.5; PldaConfig plda_config; plda_config.Register(&po); po.Register("target-energy", &target_energy, "Reduce dimensionality of i-vectors using a recording-dependent" " PCA such that this fraction of the total energy remains."); KALDI_ASSERT(target_energy <= 1.0); po.Read(argc, argv); if (po.NumArgs() != 4) { po.PrintUsage(); exit(1); } std::string plda_rxfilename = po.GetArg(1), reco2utt_rspecifier = po.GetArg(2), ivector_rspecifier = po.GetArg(3), scores_wspecifier = po.GetArg(4); Plda plda; ReadKaldiObject(plda_rxfilename, &plda); SequentialTokenVectorReader reco2utt_reader(reco2utt_rspecifier); RandomAccessBaseFloatVectorReader ivector_reader(ivector_rspecifier); BaseFloatMatrixWriter scores_writer(scores_wspecifier); int32 num_reco_err = 0, num_reco_done = 0; for (; !reco2utt_reader.Done(); reco2utt_reader.Next()) { Plda this_plda(plda); std::string reco = reco2utt_reader.Key(); std::vector uttlist = reco2utt_reader.Value(); std::vector > ivectors; for (size_t i = 0; i < uttlist.size(); i++) { std::string utt = uttlist[i]; if (!ivector_reader.HasKey(utt)) { KALDI_ERR << "No iVector present in input for utterance " << utt; } Vector ivector = ivector_reader.Value(utt); ivectors.push_back(ivector); } if (ivectors.size() == 0) { KALDI_WARN << "Not producing output for recording " << reco << " since no segments had iVectors"; num_reco_err++; } else { Matrix ivector_mat(ivectors.size(), ivectors[0].Dim()), ivector_mat_pca, ivector_mat_plda, pca_transform, scores(ivectors.size(), ivectors.size()); for (size_t i = 0; i < ivectors.size(); i++) { ivector_mat.Row(i).CopyFromVec(ivectors[i]); } if (EstPca(ivector_mat, target_energy, reco, &pca_transform)) { // Apply the PCA transform to the raw i-vectors. ApplyPca(ivector_mat, pca_transform, &ivector_mat_pca); // Apply the PCA transform to the parameters of the PLDA model. this_plda.ApplyTransform(Matrix(pca_transform)); // Now transform the i-vectors using the reduced PLDA model. TransformIvectors(ivector_mat_pca, plda_config, this_plda, &ivector_mat_plda); } else { // If EstPca returns false, we won't apply any PCA. TransformIvectors(ivector_mat, plda_config, this_plda, &ivector_mat_plda); } for (int32 i = 0; i < ivector_mat_plda.NumRows(); i++) { for (int32 j = 0; j < ivector_mat_plda.NumRows(); j++) { scores(i, j) = this_plda.LogLikelihoodRatio(Vector( ivector_mat_plda.Row(i)), 1.0, Vector(ivector_mat_plda.Row(j))); } } scores_writer.Write(reco, scores); num_reco_done++; } } KALDI_LOG << "Processed " << num_reco_done << " recordings, " << num_reco_err << " had errors."; return (num_reco_done != 0 ? 0 : 1 ); } catch(const std::exception &e) { std::cerr << e.what(); return -1; } }