# # README # # Language model & lexicon examples # using command-line executables in lm/ # To print and display FSTs, # make sure you have OpenFst binaries in your PATH, for example: # export PATH=$PATH:~/Sources/UBM-ASR/branches/clean/openfst-1.2/bin # If you have X installed in your local machine, you can display # FSTs from merlin by ssh'ing with X forwarding, for example: # ssh -X qboulianne@merlin # The following commands and examples assume that your are # in working directory UBM-ASR/branches/clean/src/lm #------------------------------------------- # Language model FST (G) # The command-line utility for # creating a language model FST from an arpa file is # "arpa2fst". # A summary of options and usage can be displayed with: ./arpa2fst --help # Read an arpa file to produce an FST with symbol tables: ./arpa2fst < input.arpa > grammar.fst # Print it or display it: fstprint grammar.fst fstdraw grammar.fst | dotty - # Note that arpa2fst will create a word symbol table # from all the words are in the ARPA file. # You can save this symbol table in text format # for examination or later reuse. fstprint --save_isymbols=grammar.syms grammar.fst > /dev/null #---------------------------------------------- # Lexicon (L) # The command-line utility for # creating a lexicon FST from a text file is # "lex2fst". # A summary of options and usage can be displayed with: ./lex2fst --help # Read a lexicon file (containing prononciation probabilities) # and produce an FST with symbol tables. # By default it will have disambiguation markers, # optional silence between words, # and FST weights will be -log(prob). ./lex2fst < prob_input.lex > lexicon.fst # Print it or display it fstprint lexicon.fst fstdraw lexicon.fst | dotty - # To produce one without markers (and also smaller): ./lex2fst --nodisamb < prob_input.lex > lexicon_nomarkers.fst #--------------------------------- # Combining lexicon and grammar # lgrecipe.cc is an example recipe for building det(LoG) # in C++ using calls to functions in lm/kaldi-lm.a # Here we use a large lexicon and language model from last year's. # First get input files: export MDIR=/homes/eva/q/qgoel/englishModels cp $MDIR/lm_callhome_gigaword_switchboard_web.hd.dct largelexicon.dct gunzip -c $MDIR/lm_callhome_gigaword_switchboard_web.3gram.arpa.gz > largelm.arpa # Set memory limits (by default limited to 400 MB). Make it 4 GB. ulimit -m 4000000 -v 8000000 ./lgrecipe largelexicon.dct largelm.arpa detlg.fst # Check its size: should be close to 13 M arcs and 8 M nodes fstinfo detlg.fst | head -15 #--------------------------------------- # Expanding nested grammars # replace-example is a use-case example that creates # small grammars from text files. These grammars # refer to other grammars using non-terminal symbols. # The result is the fully expanded grammar FST, # where each non-terminal has been expanded entirely # to non-terminals. cd examples # Example 1 : create the expanded grammar ../replace-example input3.txt CREATURE.txt > input3.fst # and generate a random sentence from the expanded grammar fstrandgen input3.fst | fstrmepsilon | fstprint | cut -f 4 # Example 2 : create the expanded grammar ../replace-example input4.txt DAYOFMONTH.txt MONTH.txt YEAR.txt YEARDATE.txt > input4.fst # and generate random sentence fstrandgen input4.fst | fstproject --project_output | fstrmepsilon | fstprint | cut -f 4 #-------------------------------------------- # TODO: Adapt README.testfiles as an example of how to create # an arpa language model and evaluate its score / perplexity.