// lm/arpa-lm-compiler.cc // Copyright 2009-2011 Gilles Boulianne // Copyright 2016 Smart Action LLC (kkm) // Copyright 2017 Xiaohui Zhang // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include "base/kaldi-math.h" #include "lm/arpa-lm-compiler.h" #include "util/stl-utils.h" #include "util/text-utils.h" #include "fstext/remove-eps-local.h" namespace kaldi { class ArpaLmCompilerImplInterface { public: virtual ~ArpaLmCompilerImplInterface() { } virtual void ConsumeNGram(const NGram& ngram, bool is_highest) = 0; }; namespace { typedef int32 StateId; typedef int32 Symbol; // GeneralHistKey can represent state history in an arbitrarily large n // n-gram model with symbol ids fitting int32. class GeneralHistKey { public: // Construct key from being and end iterators. template GeneralHistKey(InputIt begin, InputIt end) : vector_(begin, end) { } // Construct empty history key. GeneralHistKey() : vector_() { } // Return tails of the key as a GeneralHistKey. The tails of an n-gram // w[1..n] is the sequence w[2..n] (and the heads is w[1..n-1], but the // key class does not need this operartion). GeneralHistKey Tails() const { return GeneralHistKey(vector_.begin() + 1, vector_.end()); } // Keys are equal if represent same state. friend bool operator==(const GeneralHistKey& a, const GeneralHistKey& b) { return a.vector_ == b.vector_; } // Public typename HashType for hashing. struct HashType : public std::unary_function { size_t operator()(const GeneralHistKey& key) const { return VectorHasher().operator()(key.vector_); } }; private: std::vector vector_; }; // OptimizedHistKey combines 3 21-bit symbol ID values into one 64-bit // machine word. allowing significant memory reduction and some runtime // benefit over GeneralHistKey. Since 3 symbols are enough to track history // in a 4-gram model, this optimized key is used for smaller models with up // to 4-gram and symbol values up to 2^21-1. // // See GeneralHistKey for interface requrements of a key class. class OptimizedHistKey { public: enum { kShift = 21, // 21 * 3 = 63 bits for data. kMaxData = (1 << kShift) - 1 }; template OptimizedHistKey(InputIt begin, InputIt end) : data_(0) { for (uint32 shift = 0; begin != end; ++begin, shift += kShift) { data_ |= static_cast(*begin) << shift; } } OptimizedHistKey() : data_(0) { } OptimizedHistKey Tails() const { return OptimizedHistKey(data_ >> kShift); } friend bool operator==(const OptimizedHistKey& a, const OptimizedHistKey& b) { return a.data_ == b.data_; } struct HashType : public std::unary_function { size_t operator()(const OptimizedHistKey& key) const { return key.data_; } }; private: explicit OptimizedHistKey(uint64 data) : data_(data) { } uint64 data_; }; } // namespace template class ArpaLmCompilerImpl : public ArpaLmCompilerImplInterface { public: ArpaLmCompilerImpl(ArpaLmCompiler* parent, fst::StdVectorFst* fst, Symbol sub_eps); virtual void ConsumeNGram(const NGram &ngram, bool is_highest); private: StateId AddStateWithBackoff(HistKey key, float backoff); void CreateBackoff(HistKey key, StateId state, float weight); ArpaLmCompiler *parent_; // Not owned. fst::StdVectorFst* fst_; // Not owned. Symbol bos_symbol_; Symbol eos_symbol_; Symbol sub_eps_; StateId eos_state_; typedef unordered_map HistoryMap; HistoryMap history_; }; template ArpaLmCompilerImpl::ArpaLmCompilerImpl( ArpaLmCompiler* parent, fst::StdVectorFst* fst, Symbol sub_eps) : parent_(parent), fst_(fst), bos_symbol_(parent->Options().bos_symbol), eos_symbol_(parent->Options().eos_symbol), sub_eps_(sub_eps) { // The algorithm maintains state per history. The 0-gram is a special state // for emptry history. All unigrams (including BOS) backoff into this state. StateId zerogram = fst_->AddState(); history_[HistKey()] = zerogram; // Also, if is not treated as epsilon, create a common end state for // all transitions acepting the , since they do not back off. This small // optimization saves about 2% states in an average grammar. if (sub_eps_ == 0) { eos_state_ = fst_->AddState(); fst_->SetFinal(eos_state_, 0); } } template void ArpaLmCompilerImpl::ConsumeNGram(const NGram &ngram, bool is_highest) { // Generally, we do the following. Suppose we are adding an n-gram "A B // C". Then find the node for "A B", add a new node for "A B C", and connect // them with the arc accepting "C" with the specified weight. Also, add a // backoff arc from the new "A B C" node to its backoff state "B C". // // Two notable exceptions are the highest order n-grams, and final n-grams. // // When adding a highest order n-gram (e. g., our "A B C" is in a 3-gram LM), // the following optimization is performed. There is no point adding a node // for "A B C" with a "C" arc from "A B", since there will be no other // arcs ingoing to this node, and an epsilon backoff arc into the backoff // model "B C", with the weight of \bar{1}. To save a node, create an arc // accepting "C" directly from "A B" to "B C". This saves as many nodes // as there are the highest order n-grams, which is typically about half // the size of a large 3-gram model. // // Indeed, this does not apply to n-grams ending in EOS, since they do not // back off. These are special, as they do not have a back-off state, and // the node for "(..anything..) " is always final. These are handled // in one of the two possible ways, If symbols and are being // replaced by epsilons, neither node nor arc is created, and the logprob // of the n-gram is applied to its source node as final weight. If and // are preserved, then a special final node for is allocated and // used as the destination of the "" acceptor arc. HistKey heads(ngram.words.begin(), ngram.words.end() - 1); typename HistoryMap::iterator source_it = history_.find(heads); if (source_it == history_.end()) { // There was no "A B", therefore the probability of "A B C" is zero. // Print a warning and discard current n-gram. if (parent_->ShouldWarn()) KALDI_WARN << parent_->LineReference() << " skipped: no parent (n-1)-gram exists"; return; } StateId source = source_it->second; StateId dest; Symbol sym = ngram.words.back(); float weight = -ngram.logprob; if (sym == sub_eps_ || sym == 0) { KALDI_ERR << " or disambiguation symbol " << sym << "found in the ARPA file. "; } if (sym == eos_symbol_) { if (sub_eps_ == 0) { // Keep as a real symbol when not substituting. dest = eos_state_; } else { // Treat as if it was epsilon: mark source final, with the weight // of the n-gram. fst_->SetFinal(source, weight); return; } } else { // For the highest order n-gram, this may find an existing state, for // non-highest, will create one (unless there are duplicate n-grams // in the grammar, which cannot be reliably detected if highest order, // so we better do not do that at all). dest = AddStateWithBackoff( HistKey(ngram.words.begin() + (is_highest ? 1 : 0), ngram.words.end()), -ngram.backoff); } if (sym == bos_symbol_) { weight = 0; // Accepting is always free. if (sub_eps_ == 0) { // is as a real symbol, only accepted in the start state. source = fst_->AddState(); fst_->SetStart(source); } else { // The new state for unigram history *is* the start state. fst_->SetStart(dest); return; } } // Add arc from source to dest, whichever way it was found. fst_->AddArc(source, fst::StdArc(sym, sym, weight, dest)); return; } // Find or create a new state for n-gram defined by key, and ensure it has a // backoff transition. The key is either the current n-gram for all but // highest orders, or the tails of the n-gram for the highest order. The // latter arises from the chain-collapsing optimization described above. template StateId ArpaLmCompilerImpl::AddStateWithBackoff(HistKey key, float backoff) { typename HistoryMap::iterator dest_it = history_.find(key); if (dest_it != history_.end()) { // Found an existing state in the history map. Invariant: if the state in // the map, then its backoff arc is in the FST. We are done. return dest_it->second; } // Otherwise create a new state and its backoff arc, and register in the map. StateId dest = fst_->AddState(); history_[key] = dest; CreateBackoff(key.Tails(), dest, backoff); return dest; } // Create a backoff arc for a state. Key is a backoff destination that may or // may not exist. When the destination is not found, naturally fall back to // the lower order model, and all the way down until one is found (since the // 0-gram model is always present, the search is guaranteed to terminate). template inline void ArpaLmCompilerImpl::CreateBackoff( HistKey key, StateId state, float weight) { typename HistoryMap::iterator dest_it = history_.find(key); while (dest_it == history_.end()) { key = key.Tails(); dest_it = history_.find(key); } // The arc should transduce either or #0 to , depending on the // epsilon substitution mode. This is the only case when input and output // label may differ. fst_->AddArc(state, fst::StdArc(sub_eps_, 0, weight, dest_it->second)); } ArpaLmCompiler::~ArpaLmCompiler() { if (impl_ != NULL) delete impl_; } void ArpaLmCompiler::HeaderAvailable() { KALDI_ASSERT(impl_ == NULL); // Use optimized implementation if the grammar is 4-gram or less, and the // maximum attained symbol id will fit into the optimized range. int64 max_symbol = 0; if (Symbols() != NULL) max_symbol = Symbols()->AvailableKey() - 1; // If augmenting the symbol table, assume the wors case when all words in // the model being read are novel. if (Options().oov_handling == ArpaParseOptions::kAddToSymbols) max_symbol += NgramCounts()[0]; if (NgramCounts().size() <= 4 && max_symbol < OptimizedHistKey::kMaxData) { impl_ = new ArpaLmCompilerImpl(this, &fst_, sub_eps_); } else { impl_ = new ArpaLmCompilerImpl(this, &fst_, sub_eps_); KALDI_LOG << "Reverting to slower state tracking because model is large: " << NgramCounts().size() << "-gram with symbols up to " << max_symbol; } } void ArpaLmCompiler::ConsumeNGram(const NGram &ngram) { // is invalid in tails, in heads of an n-gram. for (int i = 0; i < ngram.words.size(); ++i) { if ((i > 0 && ngram.words[i] == Options().bos_symbol) || (i + 1 < ngram.words.size() && ngram.words[i] == Options().eos_symbol)) { if (ShouldWarn()) KALDI_WARN << LineReference() << " skipped: n-gram has invalid BOS/EOS placement"; return; } } bool is_highest = ngram.words.size() == NgramCounts().size(); impl_->ConsumeNGram(ngram, is_highest); } void ArpaLmCompiler::RemoveRedundantStates() { fst::StdArc::Label backoff_symbol = sub_eps_; if (backoff_symbol == 0) { // The method of removing redundant states implemented in this function // leads to slow determinization of L o G when people use the older style of // usage of arpa2fst where the --disambig-symbol option was not specified. // The issue seems to be that it creates a non-deterministic FST, while G is // supposed to be deterministic. By 'return'ing below, we just disable this // method if people were using an older script. This method isn't really // that consequential anyway, and people will move to the newer-style // scripts (see current utils/format_lm.sh), so this isn't much of a // problem. return; } fst::StdArc::StateId num_states = fst_.NumStates(); // replace the #0 symbols on the input of arcs out of redundant states (states // that are not final and have only a backoff arc leaving them), with . for (fst::StdArc::StateId state = 0; state < num_states; state++) { if (fst_.NumArcs(state) == 1 && fst_.Final(state) == fst::TropicalWeight::Zero()) { fst::MutableArcIterator iter(&fst_, state); fst::StdArc arc = iter.Value(); if (arc.ilabel == backoff_symbol) { arc.ilabel = 0; iter.SetValue(arc); } } } // we could call fst::RemoveEps, and it would have the same effect in normal // cases, where backoff_symbol != 0 and there are no epsilons in unexpected // places, but RemoveEpsLocal is a bit safer in case something weird is going // on; it guarantees not to blow up the FST. fst::RemoveEpsLocal(&fst_); KALDI_LOG << "Reduced num-states from " << num_states << " to " << fst_.NumStates(); } void ArpaLmCompiler::Check() const { if (fst_.Start() == fst::kNoStateId) { KALDI_ERR << "Arpa file did not contain the beginning-of-sentence symbol " << Symbols()->Find(Options().bos_symbol) << "."; } } void ArpaLmCompiler::ReadComplete() { fst_.SetInputSymbols(Symbols()); fst_.SetOutputSymbols(Symbols()); RemoveRedundantStates(); Check(); } } // namespace kaldi