// nnet2bin/nnet-am-fix.cc // Copyright 2012 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "nnet2/nnet-fix.h" #include "nnet2/am-nnet.h" #include "hmm/transition-model.h" #include "tree/context-dep.h" int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::nnet2; typedef kaldi::int32 int32; const char *usage = "Copy a (cpu-based) neural net and its associated transition model,\n" "but modify it to remove certain pathologies. We use the average\n" "derivative statistics stored with the layers derived from\n" "NonlinearComponent. Note: some processes, such as nnet-combine-fast,\n" "may not process these statistics correctly, and you may have to recover\n" "them using the --stats-from option of nnet-am-copy before you use.\n" "this program.\n" "\n" "Usage: nnet-am-fix [options] \n" "e.g.:\n" " nnet-am-fix 1.mdl 1_fixed.mdl\n" "or:\n" " nnet-am-fix --get-counts-from=1.gradient 1.mdl 1_shrunk.mdl\n"; bool binary_write = true; NnetFixConfig config; ParseOptions po(usage); po.Register("binary", &binary_write, "Write output in binary mode"); config.Register(&po); po.Read(argc, argv); if (po.NumArgs() != 2) { po.PrintUsage(); exit(1); } std::string nnet_rxfilename = po.GetArg(1), nnet_wxfilename = po.GetArg(2); TransitionModel trans_model; AmNnet am_nnet; { bool binary; Input ki(nnet_rxfilename, &binary); trans_model.Read(ki.Stream(), binary); am_nnet.Read(ki.Stream(), binary); } FixNnet(config, &am_nnet.GetNnet()); { Output ko(nnet_wxfilename, binary_write); trans_model.Write(ko.Stream(), binary_write); am_nnet.Write(ko.Stream(), binary_write); } KALDI_LOG << "Copied neural net from " << nnet_rxfilename << " to " << nnet_wxfilename; return 0; } catch(const std::exception &e) { std::cerr << e.what() << '\n'; return -1; } }