// nnet2bin/nnet-am-info.cc // Copyright 2012 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "hmm/transition-model.h" #include "nnet2/am-nnet.h" int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::nnet2; typedef kaldi::int32 int32; const char *usage = "Print human-readable information about the neural network\n" "acoustic model to the standard output\n" "Usage: nnet-am-info [options] \n" "e.g.:\n" " nnet-am-info 1.nnet\n"; ParseOptions po(usage); bool print_learning_rates = false; po.Register("print-learning-rates", &print_learning_rates, "If true, instead of printing the normal info, print a " "colon-separated list of the learning rates for each updatable " "layer, suitable to give to nnet-am-copy as the argument to" "--learning-rates."); po.Read(argc, argv); if (po.NumArgs() != 1) { po.PrintUsage(); exit(1); } std::string nnet_rxfilename = po.GetArg(1); TransitionModel trans_model; AmNnet am_nnet; { bool binary_read; Input ki(nnet_rxfilename, &binary_read); trans_model.Read(ki.Stream(), binary_read); am_nnet.Read(ki.Stream(), binary_read); } if (print_learning_rates) { Vector learning_rates(am_nnet.GetNnet().NumUpdatableComponents()); am_nnet.GetNnet().GetLearningRates(&learning_rates); int32 nc = learning_rates.Dim(); for (int32 i = 0; i < nc; i++) std::cout << learning_rates(i) << (i < nc - 1 ? ":" : ""); std::cout << std::endl; KALDI_LOG << "Printed learning-rate info for " << nnet_rxfilename; } else { std::cout << am_nnet.Info(); KALDI_LOG << "Printed info about " << nnet_rxfilename; } } catch(const std::exception &e) { std::cerr << e.what() << '\n'; return -1; } }