// nnet2bin/nnet-am-reinitialize.cc // Copyright 2014 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "nnet2/am-nnet.h" #include "hmm/transition-model.h" #include "tree/context-dep.h" int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::nnet2; typedef kaldi::int32 int32; const char *usage = "This program can used when transferring a neural net from one language\n" "to another (or one tree to another). It takes a neural net and a\n" "transition model from a different neural net, resizes the last layer\n" "to match the new transition model, zeroes it, and writes out the new,\n" "resized .mdl file. If the original model had been 'mixed-up', the associated\n" "SumGroupComponent will be removed.\n" "\n" "Usage: nnet-am-reinitialize [options] \n" "e.g.:\n" " nnet-am-reinitialize 1.mdl exp/tri6/final.mdl 2.mdl\n"; bool binary_write = true; ParseOptions po(usage); po.Register("binary", &binary_write, "Write output in binary mode"); po.Read(argc, argv); if (po.NumArgs() != 3) { po.PrintUsage(); exit(1); } std::string nnet_rxfilename = po.GetArg(1), transition_model_rxfilename = po.GetArg(2), nnet_wxfilename = po.GetArg(3); TransitionModel orig_trans_model; AmNnet am_nnet; { bool binary; Input ki(nnet_rxfilename, &binary); orig_trans_model.Read(ki.Stream(), binary); am_nnet.Read(ki.Stream(), binary); } TransitionModel new_trans_model; ReadKaldiObject(transition_model_rxfilename, &new_trans_model); am_nnet.ResizeOutputLayer(new_trans_model.NumPdfs()); { Output ko(nnet_wxfilename, binary_write); new_trans_model.Write(ko.Stream(), binary_write); am_nnet.Write(ko.Stream(), binary_write); } KALDI_LOG << "Resized neural net from " << nnet_rxfilename << " to " << am_nnet.NumPdfs() << " pdfs, and wrote to " << nnet_wxfilename; return 0; } catch(const std::exception &e) { std::cerr << e.what() << '\n'; return -1; } }