// nnet2bin/nnet-am-switch-preconditioning.cc // Copyright 2012 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "nnet2/am-nnet.h" #include "hmm/transition-model.h" #include "tree/context-dep.h" int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::nnet2; typedef kaldi::int32 int32; const char *usage = "Copy a (cpu-based) neural net and its associated transition model,\n" "and switch it to online preconditioning, i.e. change any components\n" "derived from AffineComponent to components of type\n" "AffineComponentPreconditionedOnline.\n" "\n" "Usage: nnet-am-switch-preconditioning [options] \n" "e.g.:\n" " nnet-am-switch-preconditioning --binary=false 1.mdl text.mdl\n"; int32 rank_in = 20, rank_out = 80, update_period = 4; BaseFloat num_samples_history = 2000.0; BaseFloat alpha = 4.0; bool binary_write = true; ParseOptions po(usage); po.Register("binary", &binary_write, "Write output in binary mode"); po.Register("rank-in", &rank_in, "Rank used in online-preconditioning on input side of each layer"); po.Register("rank-out", &rank_out, "Rank used in online-preconditioning on output side of each layer"); po.Register("update-period", &update_period, "Affects how frequently we update the Fisher-matrix estimate (every " "this-many minibatches)."); po.Register("num-samples-history", &num_samples_history, "Number of samples of history to use in online preconditioning " "(affects speed vs accuracy of update of Fisher matrix)"); po.Register("alpha", &alpha, "Parameter that affects amount of smoothing with unit matrix " "in online preconditioning (larger -> more smoothing)"); po.Read(argc, argv); if (po.NumArgs() != 2) { po.PrintUsage(); exit(1); } std::string nnet_rxfilename = po.GetArg(1), nnet_wxfilename = po.GetArg(2); TransitionModel trans_model; AmNnet am_nnet; { bool binary; Input ki(nnet_rxfilename, &binary); trans_model.Read(ki.Stream(), binary); am_nnet.Read(ki.Stream(), binary); } am_nnet.GetNnet().SwitchToOnlinePreconditioning(rank_in, rank_out, update_period, num_samples_history, alpha); { Output ko(nnet_wxfilename, binary_write); trans_model.Write(ko.Stream(), binary_write); am_nnet.Write(ko.Stream(), binary_write); } KALDI_LOG << "Copied neural net from " << nnet_rxfilename << " to " << nnet_wxfilename; return 0; } catch(const std::exception &e) { std::cerr << e.what() << '\n'; return -1; } }