// nnet2bin/nnet-compute-prob.cc // Copyright 2012 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "hmm/transition-model.h" #include "nnet2/train-nnet.h" #include "nnet2/am-nnet.h" int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::nnet2; typedef kaldi::int32 int32; typedef kaldi::int64 int64; const char *usage = "Computes and prints the average log-prob per frame of the given data with a\n" "neural net. The input of this is the output of e.g. nnet-get-egs\n" "Aside from the logging output, which goes to the standard error, this program\n" "prints the average log-prob per frame to the standard output.\n" "Also see nnet-logprob, which produces a matrix of log-probs for each utterance.\n" "\n" "Usage: nnet-compute-prob [options] \n" "e.g.: nnet-compute-prob 1.nnet ark:valid.egs\n"; ParseOptions po(usage); po.Read(argc, argv); if (po.NumArgs() != 2) { po.PrintUsage(); exit(1); } std::string nnet_rxfilename = po.GetArg(1), examples_rspecifier = po.GetArg(2); TransitionModel trans_model; AmNnet am_nnet; { bool binary_read; Input ki(nnet_rxfilename, &binary_read); trans_model.Read(ki.Stream(), binary_read); am_nnet.Read(ki.Stream(), binary_read); } std::vector examples; double tot_weight = 0.0, tot_like = 0.0, tot_accuracy = 0.0; int64 num_examples = 0; SequentialNnetExampleReader example_reader(examples_rspecifier); for (; !example_reader.Done(); example_reader.Next(), num_examples++) { if (examples.size() == 1000) { double accuracy; tot_like += ComputeNnetObjf(am_nnet.GetNnet(), examples, &accuracy); tot_accuracy += accuracy; tot_weight += TotalNnetTrainingWeight(examples); examples.clear(); } examples.push_back(example_reader.Value()); if (num_examples % 5000 == 0 && num_examples > 0) KALDI_LOG << "Saw " << num_examples << " examples, average " << "probability is " << (tot_like / num_examples) << " with " << "total weight " << num_examples; } if (!examples.empty()) { double accuracy; tot_like += ComputeNnetObjf(am_nnet.GetNnet(), examples, &accuracy); tot_accuracy += accuracy; tot_weight += TotalNnetTrainingWeight(examples); } KALDI_LOG << "Saw " << num_examples << " examples, average " << "probability is " << (tot_like / tot_weight) << " and accuracy is " << (tot_accuracy / tot_weight) << " with " << "total weight " << tot_weight; std::cout << (tot_like / tot_weight) << "\n"; return (num_examples == 0 ? 1 : 0); } catch(const std::exception &e) { std::cerr << e.what() << '\n'; return -1; } }