// nnet2bin/nnet-compute.cc // Copyright 2012-2013 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "hmm/transition-model.h" #include "nnet2/train-nnet.h" #include "nnet2/am-nnet.h" int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::nnet2; typedef kaldi::int32 int32; typedef kaldi::int64 int64; const char *usage = "Does the neural net computation for each file of input features, and\n" "outputs as a matrix the result. Used mostly for debugging.\n" "Note: if you want it to apply a log (e.g. for log-likelihoods), use\n" "--apply-log=true. Unlike nnet-am-compute, this version reads a 'raw'\n" "neural net\n" "\n" "Usage: nnet-compute [options] " "\n"; bool apply_log = false; bool pad_input = true; ParseOptions po(usage); po.Register("apply-log", &apply_log, "Apply a log to the result of the computation " "before outputting."); po.Register("pad-input", &pad_input, "If true, duplicate the first and last frames " "of input features as required for temporal context, to prevent #frames " "of output being less than those of input."); po.Read(argc, argv); if (po.NumArgs() != 3) { po.PrintUsage(); exit(1); } std::string raw_nnet_rxfilename = po.GetArg(1), features_rspecifier = po.GetArg(2), features_or_loglikes_wspecifier = po.GetArg(3); Nnet nnet; ReadKaldiObject(raw_nnet_rxfilename, &nnet); int64 num_done = 0, num_frames = 0; SequentialBaseFloatCuMatrixReader feature_reader(features_rspecifier); BaseFloatCuMatrixWriter writer(features_or_loglikes_wspecifier); for (; !feature_reader.Done(); feature_reader.Next()) { std::string utt = feature_reader.Key(); const CuMatrix &feats = feature_reader.Value(); int32 output_frames = feats.NumRows(), output_dim = nnet.OutputDim(); if (!pad_input) output_frames -= nnet.LeftContext() + nnet.RightContext(); if (output_frames <= 0) { KALDI_WARN << "Skipping utterance " << utt << " because output " << "would be empty."; continue; } CuMatrix output(output_frames, output_dim); NnetComputation(nnet, feats, pad_input, &output); if (apply_log) { output.ApplyFloor(1.0e-20); output.ApplyLog(); } writer.Write(utt, output); num_frames += feats.NumRows(); num_done++; } KALDI_LOG << "Processed " << num_done << " feature files, " << num_frames << " frames of input were processed."; return (num_done == 0 ? 1 : 0); } catch(const std::exception &e) { std::cerr << e.what() << '\n'; return -1; } }