// nnet2bin/nnet-copy-egs-discriminative.cc // Copyright 2012-2013 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "hmm/transition-model.h" #include "nnet2/nnet-example-functions.h" namespace kaldi { namespace nnet2 { // returns an integer randomly drawn with expected value "expected_count" // (will be either floor(expected_count) or ceil(expected_count)). // this will go into an infinite loop if expected_count is very huge, but // it should never be that huge. int32 GetCount(double expected_count) { KALDI_ASSERT(expected_count >= 0.0); int32 ans = 0; while (expected_count > 1.0) { ans++; expected_count--; } if (WithProb(expected_count)) ans++; return ans; } void AverageConstPart(int32 const_feat_dim, DiscriminativeNnetExample *eg) { if (eg->spk_info.Dim() != 0) { // already has const part. KALDI_ASSERT(eg->spk_info.Dim() == const_feat_dim); // and nothing to do. } else { int32 dim = eg->input_frames.NumCols(), basic_dim = dim - const_feat_dim; KALDI_ASSERT(const_feat_dim < eg->input_frames.NumCols()); Matrix mat(eg->input_frames); // copy to non-compressed matrix. eg->input_frames = mat.Range(0, mat.NumRows(), 0, basic_dim); eg->spk_info.Resize(const_feat_dim); eg->spk_info.AddRowSumMat(1.0 / mat.NumRows(), mat.Range(0, mat.NumRows(), basic_dim, const_feat_dim), 0.0); } } } // namespace nnet2 } // namespace kaldi int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::nnet2; typedef kaldi::int32 int32; typedef kaldi::int64 int64; const char *usage = "Copy examples for discriminative neural\n" "network training. Supports multiple wspecifiers, in\n" "which case it will write the examples round-robin to the outputs.\n" "\n" "Usage: nnet-copy-egs-discriminative [options] [ ...]\n" "\n" "e.g.\n" "nnet-copy-egs-discriminative ark:train.degs ark,t:text.degs\n" "or:\n" "nnet-copy-egs-discriminative ark:train.degs ark:1.degs ark:2.degs\n"; bool random = false; int32 srand_seed = 0; BaseFloat keep_proportion = 1.0; int32 const_feat_dim = 0; ParseOptions po(usage); po.Register("random", &random, "If true, will write frames to output " "archives randomly, not round-robin."); po.Register("keep-proportion", &keep_proportion, "If <1.0, this program will " "randomly keep this proportion of the input samples. If >1.0, it will " "in expectation copy a sample this many times. It will copy it a number " "of times equal to floor(keep-proportion) or ceil(keep-proportion)."); po.Register("srand", &srand_seed, "Seed for random number generator " "(only relevant if --random=true or --keep-proportion != 1.0)"); po.Register("const-feat-dim", &const_feat_dim, "Dimension of part of features (last dims) which varies little " "or not at all with time, and which should be stored as a single " "vector for each example rather than in the feature matrix." "Useful in systems that use iVectors. Helpful to save space."); po.Read(argc, argv); srand(srand_seed); if (po.NumArgs() < 2) { po.PrintUsage(); exit(1); } std::string examples_rspecifier = po.GetArg(1); SequentialDiscriminativeNnetExampleReader example_reader( examples_rspecifier); int32 num_outputs = po.NumArgs() - 1; std::vector example_writers(num_outputs); for (int32 i = 0; i < num_outputs; i++) example_writers[i] = new DiscriminativeNnetExampleWriter( po.GetArg(i+2)); int64 num_read = 0, num_written = 0, num_frames_written = 0; for (; !example_reader.Done(); example_reader.Next(), num_read++) { int32 count = GetCount(keep_proportion); for (int32 c = 0; c < count; c++) { int32 index = (random ? Rand() : num_written) % num_outputs; std::ostringstream ostr; ostr << num_written; if (const_feat_dim == 0) { example_writers[index]->Write(ostr.str(), example_reader.Value()); } else { DiscriminativeNnetExample eg = example_reader.Value(); AverageConstPart(const_feat_dim, &eg); example_writers[index]->Write(ostr.str(), eg); } num_written++; num_frames_written += static_cast(example_reader.Value().num_ali.size()); } } for (int32 i = 0; i < num_outputs; i++) delete example_writers[i]; KALDI_LOG << "Read " << num_read << " discriminative neural-network training" << " examples, wrote " << num_written << ", consisting of " << num_frames_written << " frames."; return (num_written == 0 ? 1 : 0); } catch(const std::exception &e) { std::cerr << e.what() << '\n'; return -1; } }