// nnet3/natural-gradient-online.cc // Copyright 2013 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "nnet3/natural-gradient-online.h" #include "nnet3/nnet-parse.h" namespace kaldi { namespace nnet3 { OnlineNaturalGradient::OnlineNaturalGradient(): rank_(40), update_period_(1), num_samples_history_(2000.0), num_minibatches_history_(0.0), alpha_(4.0), epsilon_(1.0e-10), delta_(5.0e-04), frozen_(false), t_(0), self_debug_(false), rho_t_(-1.0e+10) { } /** This function creates a matrix with orthonormal rows that is like the following matrix, except with each row normalized to have unit 2-norm: [ 1.1 0 1 0 1 0 0 1.1 0 1 0 1 ] The reason why the first element in each row is 1.1 and not 1, is for symmetry-breaking... we don't want any weighted sum of all these rows to be all ones, because the derivative in that direction can be zero in some architectures and it causes us to have to do an inefficient CPU-based renormalization. */ // static void OnlineNaturalGradient::InitOrthonormalSpecial(CuMatrixBase *R) { int32 num_rows = R->NumRows(), num_cols = R->NumCols(); KALDI_ASSERT(num_cols >= num_rows); R->SetZero(); std::vector > elems; elems.reserve(num_cols); BaseFloat first_elem = 1.1; for (int32 r = 0; r < num_rows; r++) { std::vector cols; // columns that have an entry for this row for (int32 c = r; c < num_cols; c += num_rows) cols.push_back(c); BaseFloat normalizer = 1.0 / sqrt(first_elem * first_elem + cols.size() - 1); for (size_t i = 0; i < cols.size(); i++) { int32 c = cols[i]; MatrixElement e = { r, c, normalizer * (i == 0 ? first_elem : BaseFloat(1.0)) }; elems.push_back(e); } } R->AddElements(1.0, elems); } void OnlineNaturalGradient::InitDefault(int32 D) { if (rank_ >= D) { KALDI_WARN << "Rank " << rank_ << " of online preconditioner is >= dim " << D << ", setting it to " << (D - 1) << " (but this is probably still too high)"; rank_ = D - 1; } if (rank_ == 0) { // Dimension of input data was 1, so the natural gradient preconditioner // would always be the unit matrix. // We'll handle this as a special case, for generality. return; } KALDI_ASSERT(num_samples_history_ > 0.0 && num_samples_history_ <= 1.0e+06); KALDI_ASSERT((num_minibatches_history_ == 0.0 || num_minibatches_history_ > 1.0) && num_minibatches_history_ < 1.0e+06); KALDI_ASSERT(alpha_ >= 0.0); KALDI_ASSERT(rank_ > 0); KALDI_ASSERT(epsilon_ > 0.0 && epsilon_ <= 1.0e-05); // plausible values. KALDI_ASSERT(delta_ > 0.0 && delta_ <= 1.0e-02); // plausible values. // to initialize, in the equation // F_t =(def) R_t^T D_t R_t + \rho_t I // we will set the orthogonal R_t to a special orthogonal matrix with no zero // rows or columns (see the function), rho_t to epsilon, // and D_t to epsilon. But we don't store R_t directly. Instead, we store // W_t =(def) E_t^{0.5} R_t, // where E_t =(def) 1/\beta_t (D_t^{-1} + 1/\beta_t I)^{-1} // from (eqn:tii), // e_{tii} = 1/(\beta_t/d_{tii} + 1), // where // \beta_t =(def) \rho_t + \alpha/D tr(F_t) // = epsilon + alpha/D * (epsilon * D + epsilon * rank) // = epsilon * (1 + alpha * (D + rank) / D) // And d_{tii} is epsilon, so // e_{tii} = 1/((1 + alpha * (D + rank) / D) + 1) [for each i.] // = 1/(2 + alpha * (D + rank) / D)). BaseFloat epsilon = epsilon_; // we could make this a bit more. rho_t_ = epsilon; d_t_.Resize(rank_, kUndefined); d_t_.Set(epsilon); W_t_.Resize(rank_, D, kUndefined); // after the next line, W_ will store the orthogonal matrix R_t. InitOrthonormalSpecial(&W_t_); BaseFloat E_tii = 1.0 / ( 2.0 + (D + rank_) * alpha_ / D ); // W_t =(def) E_t^{0.5} R_t. W_t_.Scale(sqrt(E_tii)); t_ = 0; } void OnlineNaturalGradient::Init(const CuMatrixBase &X0) { int32 D = X0.NumCols(); // for locking reasons it's better to use a different object. OnlineNaturalGradient this_copy(*this); this_copy.InitDefault(D); this_copy.t_ = 1; // Prevent recursion to Init() again. CuMatrix X0_copy(X0.NumRows(), X0.NumCols(), kUndefined); // 'num_iters' is number of iterations with the same data from a pseudorandom // start. this is a faster way of starting than doing eigenvalue // decomposition. // // Note: we only do three iterations of initialization if we have enough data // that it's reasonably possible to estimate the subspace of dimension // this_copy.rank_. If we don't have more than that many rows in our initial // minibatch X0, we just do one iteration... this gives us almost exactly // (barring small effects due to epsilon_ > 0) the row subspace of X0 after // one iteration anyway. int32 num_init_iters; if (X0.NumRows() <= this_copy.rank_) num_init_iters = 1; else num_init_iters = 3; this_copy.frozen_ = false; // un-freeze if it was frozen, so we can // initialize. for (int32 i = 0; i < num_init_iters; i++) { BaseFloat scale; X0_copy.CopyFromMat(X0); this_copy.PreconditionDirections(&X0_copy, &scale); } rank_ = this_copy.rank_; W_t_.Swap(&this_copy.W_t_); d_t_.Swap(&this_copy.d_t_); rho_t_ = this_copy.rho_t_; } void OnlineNaturalGradient::PreconditionDirections( CuMatrixBase *X_t, BaseFloat *scale) { if (X_t->NumCols() == 1) { // If the dimension of the space equals one then our natural gradient update // with rescaling becomes a no-op, but the code wouldn't naturally handle it // because rank would be zero. Support this as a special case. if (scale) *scale = 1.0; return; } if (t_ == 0) // not initialized Init(*X_t); int32 R = W_t_.NumRows(), D = W_t_.NumCols(); // space for W_t, J_t, K_t, L_t. CuMatrix WJKL_t(2 * R, D + R); WJKL_t.Range(0, R, 0, D).CopyFromMat(W_t_); BaseFloat rho_t(rho_t_); Vector d_t(d_t_); bool updating = Updating(); BaseFloat initial_product; initial_product = TraceMatMat(*X_t, *X_t, kTrans); PreconditionDirectionsInternal(rho_t, initial_product, updating, d_t, &WJKL_t, X_t); if (scale) { if (initial_product <= 0.0) { *scale = 1.0; } else { BaseFloat final_product = TraceMatMat(*X_t, *X_t, kTrans); *scale = sqrt(initial_product / final_product); } } t_ += 1; } void OnlineNaturalGradient::ReorthogonalizeRt1( const VectorBase &d_t1, BaseFloat rho_t1, CuMatrixBase *W_t1, CuMatrixBase *temp_W, CuMatrixBase *temp_O) { // threshold is a configuration value: a desired threshold on orthogonality, // below which we won't reorthogonalize. const BaseFloat threshold = 1.0e-03; int32 R = W_t1->NumRows(), D = W_t1->NumCols(); BaseFloat beta_t1 = rho_t1 * (1.0 + alpha_) + alpha_ * d_t1.Sum() / D; Vector e_t1(R, kUndefined), sqrt_e_t1(R, kUndefined), inv_sqrt_e_t1(R, kUndefined); ComputeEt(d_t1, beta_t1, &e_t1, &sqrt_e_t1, &inv_sqrt_e_t1); temp_O->SymAddMat2(1.0, *W_t1, kNoTrans, 0.0); // O_{t+1} = E_{t+1}^{-0.5} W_{t+1} W_{t+1}^T E_{t+1}^{-0.5} Matrix O_mat(*temp_O); SpMatrix O(O_mat, kTakeLower); for (int32 i = 0; i < R; i++) { BaseFloat i_factor = inv_sqrt_e_t1(i); for (int32 j = 0; j <= i; j++) { BaseFloat j_factor = inv_sqrt_e_t1(j); O(i, j) *= i_factor * j_factor; } } if (O.IsUnit(threshold)) { if (self_debug_) { KALDI_WARN << "Not reorthogonalizing since already orthognoal: " << O; } return; } TpMatrix C(R); bool cholesky_ok = true; try { // one of the following two calls may throw an exception. C.Cholesky(O); C.Invert(); // Now it's C^{-1}. if (!(C.Max() < 100.0)) { KALDI_WARN << "Cholesky out of expected range, " << "reorthogonalizing with Gram-Schmidt"; cholesky_ok = false; } } catch (...) { // We do a Gram-Schmidt orthogonalization, which is a bit less efficient but // more robust than the method using Cholesky. KALDI_WARN << "Cholesky or Invert() failed while re-orthogonalizing R_t. " << "Re-orthogonalizing on CPU."; cholesky_ok = false; } if (!cholesky_ok) { Matrix cpu_W_t1(*W_t1); cpu_W_t1.OrthogonalizeRows(); W_t1->CopyFromMat(cpu_W_t1); // at this point cpu_W_t1 represents R_{t+1}- it has orthonormal // rows. Do: W_{t+1} = E_{t+1}^{0.5} R_{t+1} CuVector sqrt_e_t1_gpu(sqrt_e_t1); W_t1->MulRowsVec(sqrt_e_t1_gpu); return; } // Next, compute (E_t^{0.5} C^{-1} E_t^{-0.5}) // but it's really t+1, not t. for (int32 i = 0; i < R; i++) { BaseFloat i_factor = sqrt_e_t1(i); for (int32 j = 0; j < i; j++) { // skip j == i because i_factor * j_factor == 1 for j == i. BaseFloat j_factor = inv_sqrt_e_t1(j); C(i, j) *= i_factor * j_factor; } } O_mat.CopyFromTp(C); temp_O->CopyFromMat(O_mat); temp_W->CopyFromMat(*W_t1); W_t1->AddMatMat(1.0, *temp_O, kNoTrans, *temp_W, kNoTrans, 0.0); } // makes sure certain invariants are being preserved void OnlineNaturalGradient::SelfTest() const { KALDI_ASSERT(rho_t_ >= epsilon_); BaseFloat d_t_max = d_t_.Max(), d_t_min = d_t_.Min(); KALDI_ASSERT(d_t_min >= epsilon_); KALDI_ASSERT(d_t_min > 0.9 * delta_ * d_t_max); KALDI_ASSERT(rho_t_ > 0.9 * delta_ * d_t_max); int32 D = W_t_.NumCols(), R = W_t_.NumRows(); BaseFloat beta_t = rho_t_ * (1.0 + alpha_) + alpha_ * d_t_.Sum() / D; Vector e_t(R, kUndefined), sqrt_e_t(R, kUndefined), inv_sqrt_e_t(R, kUndefined); ComputeEt(d_t_, beta_t, &e_t, &sqrt_e_t, &inv_sqrt_e_t); CuSpMatrix S(R); S.AddMat2(1.0, W_t_, kNoTrans, 0.0); SpMatrix O(S); for (int32 i = 0; i < R; i++) { BaseFloat i_factor = inv_sqrt_e_t(i); for (int32 j = 0; j <= i; j++) { BaseFloat j_factor = inv_sqrt_e_t(j); O(i, j) *= i_factor * j_factor; } } if (!O.IsUnit(1.0e-04) || O(0, 0) != O(0, 0)) { BaseFloat worst_error = 0.0; int32 worst_i = 0, worst_j = 0; for (int32 i = 0; i < R; i++) { for (int32 j = 0; j < R; j++) { BaseFloat elem = O(i, j); BaseFloat error = fabs(elem - (i == j ? 1.0 : 0.0)); if (error > worst_error || error != error) { worst_error = error; worst_i = i; worst_j = j; } } } if (worst_error > 1.0e-02 || worst_error != worst_error) { KALDI_WARN << "Failed to verify W_t (worst error: O[" << worst_i << ',' << worst_j << "] = " << O(worst_i, worst_j) << ", d_t = " << d_t_; } } } void OnlineNaturalGradient::PreconditionDirectionsInternal( const BaseFloat rho_t, const BaseFloat tr_X_Xt, bool updating, const Vector &d_t, CuMatrixBase *WJKL_t, CuMatrixBase *X_t) { int32 N = X_t->NumRows(), // Minibatch size. D = X_t->NumCols(), // Dimensions of vectors we're preconditioning R = rank_; // Rank of correction to unit matrix. KALDI_ASSERT(R > 0 && R < D); BaseFloat eta = Eta(N); CuMatrix H_t(N, R); const CuSubMatrix W_t(*WJKL_t, 0, R, 0, D); // Below, WJ_t and LK_t are combinations of two matrices, // which we define in order to combine two separate multiplications into one. CuSubMatrix J_t(*WJKL_t, R, R, 0, D), L_t(*WJKL_t, 0, R, D, R), K_t(*WJKL_t, R, R, D, R), WJ_t(*WJKL_t, 0, 2 * R, 0, D), LK_t(*WJKL_t, 0, 2 * R, D, R); H_t.AddMatMat(1.0, *X_t, kNoTrans, W_t, kTrans, 0.0); // H_t = X_t W_t^T if (!updating) { // We're not updating the estimate of the Fisher matrix; we just apply the // preconditioning and return. // X_hat_t = X_t - H_t W_t X_t->AddMatMat(-1.0, H_t, kNoTrans, W_t, kNoTrans, 1.0); return; } J_t.AddMatMat(1.0, H_t, kTrans, *X_t, kNoTrans, 0.0); // J_t = H_t^T X_t bool compute_lk_together = (N > D); if (compute_lk_together) { // do the following two multiplies in one operation... // note // L_t = W_t J_t^T // K_t = J_t J_t^T // Note: L_t was defined as L_t = J_t W_t^T, but it's actually symmetric, // so we can compute it as L_t = W_t J_t^T. LK_t.AddMatMat(1.0, WJ_t, kNoTrans, J_t, kTrans, 0.0); } else { K_t.SymAddMat2(1.0, J_t, kNoTrans, 0.0); L_t.SymAddMat2(1.0, H_t, kTrans, 0.0); } Matrix LK_cpu(LK_t); // contains L and K on the CPU. SubMatrix L_t_cpu(LK_cpu, 0, R, 0, R), K_t_cpu(LK_cpu, R, R, 0, R); if (!compute_lk_together) { // the SymAddMat2 operations only set the lower triangle and diagonal. L_t_cpu.CopyLowerToUpper(); K_t_cpu.CopyLowerToUpper(); } // beta_t = \rho_t(1+\alpha) + \alpha/D tr(D_t) BaseFloat beta_t = rho_t * (1.0 + alpha_) + alpha_ * d_t.Sum() / D; Vector e_t(R), sqrt_e_t(R), inv_sqrt_e_t(R); ComputeEt(d_t, beta_t, &e_t, &sqrt_e_t, &inv_sqrt_e_t); KALDI_VLOG(5) << "e_t = " << e_t; // The double-precision Z_t here, and the scaling, is to avoid potential // overflow, because Z_t is proportional to the fourth power of data. SpMatrix Z_t_double(R); ComputeZt(N, rho_t, d_t, inv_sqrt_e_t, K_t_cpu, L_t_cpu, &Z_t_double); BaseFloat z_t_scale = std::max(1.0, Z_t_double.Trace()); Z_t_double.Scale(1.0 / z_t_scale); SpMatrix Z_t_scaled(Z_t_double); Matrix U_t(R, R); Vector c_t(R); // do the symmetric eigenvalue decomposition Z_t = U_t C_t U_t^T. Z_t_scaled.Eig(&c_t, &U_t); SortSvd(&c_t, &U_t); c_t.Scale(z_t_scale); const BaseFloat condition_threshold = 1.0e+06; // must_reorthogonalize will be true if the last diagonal element of c_t is // negative, since we don't take the absolute value, but this is the right // thing anyway. bool must_reorthogonalize = (c_t(0) > condition_threshold * c_t(R - 1)); BaseFloat c_t_floor = pow(rho_t * (1 - eta), 2); int32 nf; c_t.ApplyFloor(c_t_floor, &nf); if (nf > 0) must_reorthogonalize = true; if (nf > 0 && self_debug_) { KALDI_WARN << "Floored " << nf << " elements of C_t."; } X_t->AddMatMat(-1.0, H_t, kNoTrans, W_t, kNoTrans, 1.0); // X_hat_t = X_t - H_t W_t Vector sqrt_c_t(c_t); sqrt_c_t.ApplyPow(0.5); // \rho_{t+1} = 1/(D - R) (\eta/N tr(X_t X_t^T) + (1-\eta)(D \rho_t + tr(D_t)) - tr(C_t^{0.5})). BaseFloat rho_t1 = 1.0 / (D - R) * (eta / N * tr_X_Xt + (1-eta)*(D * rho_t + d_t.Sum()) - sqrt_c_t.Sum()); // D_{t+1} = C_t^{0.5} - \rho_{t+1} I Vector d_t1(sqrt_c_t); d_t1.Add(-rho_t1); BaseFloat floor_val = std::max(epsilon_, delta_ * sqrt_c_t.Max()); if (rho_t1 < floor_val) rho_t1 = floor_val; d_t1.ApplyFloor(floor_val); CuMatrix W_t1(R, D); // W_{t+1} ComputeWt1(N, d_t, d_t1, rho_t, rho_t1, U_t, sqrt_c_t, inv_sqrt_e_t, W_t, &J_t, &W_t1); if (must_reorthogonalize) { if (self_debug_) { KALDI_WARN << "Reorthogonalizing."; } ReorthogonalizeRt1(d_t1, rho_t1, &W_t1, &J_t, &L_t); } W_t_.Swap(&W_t1); d_t_.CopyFromVec(d_t1); rho_t_ = rho_t1; if (self_debug_) SelfTest(); } bool OnlineNaturalGradient::Updating() const { // Just hard-code it here that we do 10 initial updates before skipping any. // This must be > 'num_init_iters = 3' from Init(). const int num_initial_updates = 10; return (!frozen_ && (t_ <= num_initial_updates || (t_ - num_initial_updates) % update_period_ == 0)); } BaseFloat OnlineNaturalGradient::Eta(int32 N) const { if (num_minibatches_history_ > 0.0) { KALDI_ASSERT(num_minibatches_history_ > 1.0); return 1.0 / num_minibatches_history_; } else { KALDI_ASSERT(num_samples_history_ > 0.0); BaseFloat ans = 1.0 - exp(-N / num_samples_history_); // Don't let eta approach 1 too closely, as it can lead to NaN's appearing if // the input is all zero. if (ans > 0.9) ans = 0.9; return ans; } } void OnlineNaturalGradient::ComputeWt1(int32 N, const VectorBase &d_t, const VectorBase &d_t1, BaseFloat rho_t, BaseFloat rho_t1, const MatrixBase &U_t, const VectorBase &sqrt_c_t, const VectorBase &inv_sqrt_e_t, const CuMatrixBase &W_t, CuMatrixBase *J_t, CuMatrixBase *W_t1) const { int32 R = d_t.Dim(), D = W_t.NumCols(); BaseFloat eta = Eta(N); // \beta_{t+1} = \rho_{t+1} (1+\alpha) + \alpha/D tr(D_{t+1}) BaseFloat beta_t1 = rho_t1 * (1.0 + alpha_) + alpha_ * d_t1.Sum() / D; KALDI_ASSERT(beta_t1 > 0.0); Vector e_t1(R, kUndefined), sqrt_e_t1(R, kUndefined), inv_sqrt_e_t1(R, kUndefined); ComputeEt(d_t1, beta_t1, &e_t1, &sqrt_e_t1, &inv_sqrt_e_t1); Vector inv_sqrt_c_t(sqrt_c_t); inv_sqrt_c_t.InvertElements(); Vector w_t_coeff(R); for (int32 i = 0; i < R; i++) w_t_coeff(i) = (1.0 - eta) / (eta/N) * (d_t(i) + rho_t); CuVector w_t_coeff_gpu(w_t_coeff); // B_t = J_t + (1-\eta)/(\eta/N) (D_t + \rho_t I) W_t J_t->AddDiagVecMat(1.0, w_t_coeff_gpu, W_t, kNoTrans, 1.0); // A_t = (\eta/N) E_{t+1}^{0.5} C_t^{-0.5} U_t^T E_t^{-0.5} Matrix A_t(U_t, kTrans); for (int32 i = 0; i < R; i++) { BaseFloat i_factor = (eta / N) * sqrt_e_t1(i) * inv_sqrt_c_t(i); for (int32 j = 0; j < R; j++) { BaseFloat j_factor = inv_sqrt_e_t(j); A_t(i, j) *= i_factor * j_factor; } } // W_{t+1} = A_t B_t CuMatrix A_t_gpu(A_t); W_t1->AddMatMat(1.0, A_t_gpu, kNoTrans, *J_t, kNoTrans, 0.0); } void OnlineNaturalGradient::ComputeZt(int32 N, BaseFloat rho_t, const VectorBase &d_t, const VectorBase &inv_sqrt_e_t, const MatrixBase &K_t, const MatrixBase &L_t, SpMatrix *Z_t) const { // Use doubles because the range of quantities in Z_t can get large (fourth // power of data), and we want to avoid overflow. This routine is fast. BaseFloat eta = Eta(N); Vector d_t_rho_t(d_t); d_t_rho_t.Add(rho_t); // now d_t_rho_t is diag(D_t + \rho_t I). double etaN = eta / N, eta1 = 1.0 - eta, etaN_sq = etaN * etaN, eta1_sq = eta1 * eta1, etaN_eta1 = etaN * eta1; int32 R = d_t.Dim(); for (int32 i = 0; i < R; i++) { double inv_sqrt_e_t_i = inv_sqrt_e_t(i), d_t_rho_t_i = d_t_rho_t(i); for (int32 j = 0; j <= i; j++) { double inv_sqrt_e_t_j = inv_sqrt_e_t(j), d_t_rho_t_j = d_t_rho_t(j), L_t_i_j = 0.5 * (L_t(i, j) + L_t(j, i)), K_t_i_j = 0.5 * (K_t(i, j) + K_t(j, i)); // See (eqn:Zt) in header. (*Z_t)(i, j) = etaN_sq * inv_sqrt_e_t_i * K_t_i_j * inv_sqrt_e_t_j + etaN_eta1 * inv_sqrt_e_t_i * L_t_i_j * inv_sqrt_e_t_j * d_t_rho_t_j + etaN_eta1 * d_t_rho_t_i * inv_sqrt_e_t_i * L_t_i_j * inv_sqrt_e_t_j + (i == j ? eta1_sq * d_t_rho_t_i * d_t_rho_t_i : 0.0); } } } void OnlineNaturalGradient::ComputeEt(const VectorBase &d_t, BaseFloat beta_t, VectorBase *e_t, VectorBase *sqrt_e_t, VectorBase *inv_sqrt_e_t) const { // e_{tii} = 1/(\beta_t/d_{tii} + 1) int32 D = d_t.Dim(); const BaseFloat *d = d_t.Data(); BaseFloat *e = e_t->Data(); for (int32 i = 0; i < D; i++) e[i] = 1.0 / (beta_t / d[i] + 1); sqrt_e_t->CopyFromVec(*e_t); sqrt_e_t->ApplyPow(0.5); inv_sqrt_e_t->CopyFromVec(*sqrt_e_t); inv_sqrt_e_t->InvertElements(); } OnlineNaturalGradient::OnlineNaturalGradient(const OnlineNaturalGradient &other): rank_(other.rank_), update_period_(other.update_period_), num_samples_history_(other.num_samples_history_), num_minibatches_history_(other.num_minibatches_history_), alpha_(other.alpha_), epsilon_(other.epsilon_), delta_(other.delta_), frozen_(other.frozen_), t_(other.t_), self_debug_(other.self_debug_), W_t_(other.W_t_), rho_t_(other.rho_t_), d_t_(other.d_t_) { } OnlineNaturalGradient& OnlineNaturalGradient::operator = ( const OnlineNaturalGradient &other) { rank_ = other.rank_; update_period_ = other.update_period_; num_samples_history_ = other.num_samples_history_; alpha_ = other.alpha_; epsilon_ = other.epsilon_; delta_ = other.delta_; t_ = other.t_; self_debug_ = other.self_debug_; W_t_ = other.W_t_; rho_t_ = other.rho_t_; d_t_ = other.d_t_; return *this; } void OnlineNaturalGradient::SetRank(int32 rank) { KALDI_ASSERT(rank > 0); rank_ = rank; } void OnlineNaturalGradient::SetUpdatePeriod(int32 update_period) { KALDI_ASSERT(update_period > 0); update_period_ = update_period; } void OnlineNaturalGradient::SetNumSamplesHistory(BaseFloat num_samples_history) { KALDI_ASSERT(num_samples_history > 0.0 && num_samples_history < 1.0e+6); num_samples_history_ = num_samples_history; } void OnlineNaturalGradient::SetNumMinibatchesHistory( BaseFloat num_minibatches_history) { KALDI_ASSERT(num_minibatches_history > 1.0); num_minibatches_history_ = num_minibatches_history; } void OnlineNaturalGradient::SetAlpha(BaseFloat alpha) { KALDI_ASSERT(alpha >= 0.0); alpha_ = alpha; } void OnlineNaturalGradient::Swap(OnlineNaturalGradient *other) { std::swap(rank_, other->rank_); std::swap(update_period_, other->update_period_); std::swap(num_samples_history_, other->num_samples_history_); std::swap(num_minibatches_history_, other->num_minibatches_history_); std::swap(alpha_, other->alpha_); std::swap(epsilon_, other->epsilon_); std::swap(delta_, other->delta_); std::swap(frozen_, other->frozen_); std::swap(t_, other->t_); std::swap(self_debug_, other->self_debug_); W_t_.Swap(&(other->W_t_)); std::swap(rho_t_, other->rho_t_); d_t_.Swap(&(other->d_t_)); } } // namespace nnet3 } // namespace kaldi