// nnet3bin/nnet3-am-info.cc // Copyright 2012-2015 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "nnet3/am-nnet-simple.h" #include "hmm/transition-model.h" int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::nnet3; typedef kaldi::int32 int32; const char *usage = "Print some text information about an nnet3 neural network, to\n" "standard output\n" "\n" "Usage: nnet3-am-info [options] \n" "e.g.:\n" " nnet3-am-info 0.mdl\n" "See also: nnet3-am-info\n"; ParseOptions po(usage); po.Read(argc, argv); if (po.NumArgs() != 1) { po.PrintUsage(); exit(1); } std::string nnet_rxfilename = po.GetArg(1); TransitionModel trans_model; AmNnetSimple am_nnet; { bool binary; Input ki(nnet_rxfilename, &binary); trans_model.Read(ki.Stream(), binary); am_nnet.Read(ki.Stream(), binary); } std::cout << am_nnet.Info(); return 0; } catch(const std::exception &e) { std::cerr << e.what() << '\n'; return -1; } } /* Test script: cat <