// nnet3bin/nnet3-discriminative-subset-egs.cc // Copyright 2012-2015 Johns Hopkins University (author: Daniel Povey) // 2014 Vimal Manohar // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "nnet3/nnet-discriminative-example.h" int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::nnet3; typedef kaldi::int32 int32; typedef kaldi::int64 int64; const char *usage = "Creates a random subset of the input examples, of a specified size.\n" "Uses no more memory than the size of the subset.\n" "\n" "Usage: nnet3-discriminative-subset-egs [options] [ ...]\n" "\n" "e.g.\n" "nnet3-discriminative-copy-egs [args] ark:degs.1.ark ark:- | nnet-discriminative-subset-egs --n=1000 ark:- ark:subset.egs\n"; int32 srand_seed = 0; int32 n = 1000; bool randomize_order = true; ParseOptions po(usage); po.Register("srand", &srand_seed, "Seed for random number generator "); po.Register("n", &n, "Number of examples to output"); po.Register("randomize-order", &randomize_order, "If true, randomize the order " "of the output"); po.Read(argc, argv); srand(srand_seed); if (po.NumArgs() != 2) { po.PrintUsage(); exit(1); } std::string examples_rspecifier = po.GetArg(1), examples_wspecifier = po.GetArg(2); std::vector > egs; egs.reserve(n); SequentialNnetDiscriminativeExampleReader example_reader(examples_rspecifier); int64 num_read = 0; for (; !example_reader.Done(); example_reader.Next()) { num_read++; if (num_read <= n) { egs.resize(egs.size() + 1); egs.back().first = example_reader.Key(); egs.back().second = example_reader.Value(); } else { BaseFloat keep_prob = n / static_cast(num_read); if (WithProb(keep_prob)) { // With probability "keep_prob" int32 index = RandInt(0, n-1); egs[index].first = example_reader.Key(); egs[index].second = example_reader.Value(); } } } if (randomize_order) std::random_shuffle(egs.begin(), egs.end()); NnetDiscriminativeExampleWriter writer(examples_wspecifier); for (size_t i = 0; i < egs.size(); i++) { writer.Write(egs[i].first, egs[i].second); } KALDI_LOG << "Selected a subset of " << egs.size() << " out of " << num_read << " neural-network discriminative training examples "; return (num_read != 0 ? 0 : 1); } catch(const std::exception &e) { std::cerr << e.what() << '\n'; return -1; } }