// nnet3bin/nnet3-latgen-faster-parallel.cc // Copyright 2012-2016 Johns Hopkins University (author: Daniel Povey) // 2014 Guoguo Chen // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/timer.h" #include "base/kaldi-common.h" #include "decoder/decoder-wrappers.h" #include "fstext/fstext-lib.h" #include "hmm/transition-model.h" #include "nnet3/nnet-am-decodable-simple.h" #include "nnet3/nnet-utils.h" #include "util/kaldi-thread.h" #include "tree/context-dep.h" #include "util/common-utils.h" int main(int argc, char *argv[]) { // note: making this program work with GPUs is as simple as initializing the // device, but it probably won't make a huge difference in speed for typical // setups. try { using namespace kaldi; using namespace kaldi::nnet3; typedef kaldi::int32 int32; using fst::SymbolTable; using fst::Fst; using fst::StdArc; const char *usage = "Generate lattices using nnet3 neural net model. This version supports\n" "multiple decoding threads (using a shared decoding graph.)\n" "Usage: nnet3-latgen-faster-parallel [options] " " [ [] ]\n" "See also: nnet3-latgen-faster-batch (which supports GPUs)\n"; ParseOptions po(usage); Timer timer; bool allow_partial = false; TaskSequencerConfig sequencer_config; // has --num-threads option LatticeFasterDecoderConfig config; NnetSimpleComputationOptions decodable_opts; std::string word_syms_filename; std::string ivector_rspecifier, online_ivector_rspecifier, utt2spk_rspecifier; int32 online_ivector_period = 0; sequencer_config.Register(&po); config.Register(&po); decodable_opts.Register(&po); po.Register("word-symbol-table", &word_syms_filename, "Symbol table for words [for debug output]"); po.Register("allow-partial", &allow_partial, "If true, produce output even if end state was not reached."); po.Register("ivectors", &ivector_rspecifier, "Rspecifier for " "iVectors as vectors (i.e. not estimated online); per utterance " "by default, or per speaker if you provide the --utt2spk option."); po.Register("online-ivectors", &online_ivector_rspecifier, "Rspecifier for " "iVectors estimated online, as matrices. If you supply this," " you must set the --online-ivector-period option."); po.Register("online-ivector-period", &online_ivector_period, "Number of frames " "between iVectors in matrices supplied to the --online-ivectors " "option"); po.Read(argc, argv); if (po.NumArgs() < 4 || po.NumArgs() > 6) { po.PrintUsage(); exit(1); } std::string model_in_filename = po.GetArg(1), fst_in_str = po.GetArg(2), feature_rspecifier = po.GetArg(3), lattice_wspecifier = po.GetArg(4), words_wspecifier = po.GetOptArg(5), alignment_wspecifier = po.GetOptArg(6); TaskSequencer sequencer(sequencer_config); TransitionModel trans_model; AmNnetSimple am_nnet; { bool binary; Input ki(model_in_filename, &binary); trans_model.Read(ki.Stream(), binary); am_nnet.Read(ki.Stream(), binary); SetBatchnormTestMode(true, &(am_nnet.GetNnet())); SetDropoutTestMode(true, &(am_nnet.GetNnet())); CollapseModel(CollapseModelConfig(), &(am_nnet.GetNnet())); } bool determinize = config.determinize_lattice; CompactLatticeWriter compact_lattice_writer; LatticeWriter lattice_writer; if (! (determinize ? compact_lattice_writer.Open(lattice_wspecifier) : lattice_writer.Open(lattice_wspecifier))) KALDI_ERR << "Could not open table for writing lattices: " << lattice_wspecifier; RandomAccessBaseFloatMatrixReader online_ivector_reader( online_ivector_rspecifier); RandomAccessBaseFloatVectorReaderMapped ivector_reader( ivector_rspecifier, utt2spk_rspecifier); Int32VectorWriter words_writer(words_wspecifier); Int32VectorWriter alignment_writer(alignment_wspecifier); fst::SymbolTable *word_syms = NULL; if (word_syms_filename != "") if (!(word_syms = fst::SymbolTable::ReadText(word_syms_filename))) KALDI_ERR << "Could not read symbol table from file " << word_syms_filename; double tot_like = 0.0; kaldi::int64 frame_count = 0; int num_success = 0, num_fail = 0; if (ClassifyRspecifier(fst_in_str, NULL, NULL) == kNoRspecifier) { SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier); // Input FST is just one FST, not a table of FSTs. Fst *decode_fst = fst::ReadFstKaldiGeneric(fst_in_str); timer.Reset(); { for (; !feature_reader.Done(); feature_reader.Next()) { std::string utt = feature_reader.Key(); const Matrix &features (feature_reader.Value()); if (features.NumRows() == 0) { KALDI_WARN << "Zero-length utterance: " << utt; num_fail++; continue; } const Matrix *online_ivectors = NULL; const Vector *ivector = NULL; if (!ivector_rspecifier.empty()) { if (!ivector_reader.HasKey(utt)) { KALDI_WARN << "No iVector available for utterance " << utt; num_fail++; continue; } else { ivector = &ivector_reader.Value(utt); } } if (!online_ivector_rspecifier.empty()) { if (!online_ivector_reader.HasKey(utt)) { KALDI_WARN << "No online iVector available for utterance " << utt; num_fail++; continue; } else { online_ivectors = &online_ivector_reader.Value(utt); } } LatticeFasterDecoder *decoder = new LatticeFasterDecoder(*decode_fst, config); DecodableInterface *nnet_decodable = new DecodableAmNnetSimpleParallel( decodable_opts, trans_model, am_nnet, features, ivector, online_ivectors, online_ivector_period); DecodeUtteranceLatticeFasterClass *task = new DecodeUtteranceLatticeFasterClass( decoder, nnet_decodable, // takes ownership of these two. trans_model, word_syms, utt, decodable_opts.acoustic_scale, determinize, allow_partial, &alignment_writer, &words_writer, &compact_lattice_writer, &lattice_writer, &tot_like, &frame_count, &num_success, &num_fail, NULL); sequencer.Run(task); // takes ownership of "task", // and will delete it when done. } } sequencer.Wait(); // Waits for all tasks to be done. delete decode_fst; } else { // We have different FSTs for different utterances. SequentialTableReader fst_reader(fst_in_str); RandomAccessBaseFloatMatrixReader feature_reader(feature_rspecifier); for (; !fst_reader.Done(); fst_reader.Next()) { std::string utt = fst_reader.Key(); if (!feature_reader.HasKey(utt)) { KALDI_WARN << "Not decoding utterance " << utt << " because no features available."; num_fail++; continue; } const Matrix &features = feature_reader.Value(utt); if (features.NumRows() == 0) { KALDI_WARN << "Zero-length utterance: " << utt; num_fail++; continue; } const Matrix *online_ivectors = NULL; const Vector *ivector = NULL; if (!ivector_rspecifier.empty()) { if (!ivector_reader.HasKey(utt)) { KALDI_WARN << "No iVector available for utterance " << utt; num_fail++; continue; } else { ivector = &ivector_reader.Value(utt); } } if (!online_ivector_rspecifier.empty()) { if (!online_ivector_reader.HasKey(utt)) { KALDI_WARN << "No online iVector available for utterance " << utt; num_fail++; continue; } else { online_ivectors = &online_ivector_reader.Value(utt); } } // the following constructor takes ownership of the FST pointer so that // it is deleted when 'decoder' is deleted. LatticeFasterDecoder *decoder = new LatticeFasterDecoder(config, fst_reader.Value().Copy()); DecodableInterface *nnet_decodable = new DecodableAmNnetSimpleParallel( decodable_opts, trans_model, am_nnet, features, ivector, online_ivectors, online_ivector_period); DecodeUtteranceLatticeFasterClass *task = new DecodeUtteranceLatticeFasterClass( decoder, nnet_decodable, // takes ownership of these two. trans_model, word_syms, utt, decodable_opts.acoustic_scale, determinize, allow_partial, &alignment_writer, &words_writer, &compact_lattice_writer, &lattice_writer, &tot_like, &frame_count, &num_success, &num_fail, NULL); sequencer.Run(task); // takes ownership of "task", // and will delete it when done. } sequencer.Wait(); // Waits for all tasks to be done. } kaldi::int64 input_frame_count = frame_count * decodable_opts.frame_subsampling_factor; double elapsed = timer.Elapsed(); KALDI_LOG << "Time taken " << elapsed << "s: real-time factor assuming 100 feature frames/sec is " << (sequencer_config.num_threads * elapsed * 100.0 / input_frame_count); KALDI_LOG << "Done " << num_success << " utterances, failed for " << num_fail; KALDI_LOG << "Overall log-likelihood per frame is " << (tot_like / frame_count) << " over " << frame_count << " frames."; delete word_syms; if (num_success != 0) return 0; else return 1; } catch(const std::exception &e) { std::cerr << e.what(); return -1; } }