// nnetbin/cmvn-to-nnet.cc // Copyright 2012-2016 Brno University of Technology // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "nnet/nnet-nnet.h" #include "nnet/nnet-various.h" int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::nnet1; typedef kaldi::int32 int32; const char *usage = "Convert cmvn-stats into and components.\n" "Usage: cmvn-to-nnet [options] \n" "e.g.:\n" " cmvn-to-nnet --binary=false transf.mat nnet.mdl\n"; bool binary_write = false; float std_dev = 1.0; float var_floor = 1e-10; float learn_rate_coef = 0.0; ParseOptions po(usage); po.Register("binary", &binary_write, "Write output in binary mode"); po.Register("std-dev", &std_dev, "Standard deviation of the output."); po.Register("var-floor", &var_floor, "Floor the variance, so the factors in are bounded."); po.Register("learn-rate-coef", &learn_rate_coef, "Initialize learning-rate coefficient to a value."); po.Read(argc, argv); if (po.NumArgs() != 2) { po.PrintUsage(); exit(1); } std::string cmvn_stats_rxfilename = po.GetArg(1), model_out_filename = po.GetArg(2); // read the matrix, Matrix cmvn_stats; { bool binary_read; Input ki(cmvn_stats_rxfilename, &binary_read); cmvn_stats.Read(ki.Stream(), binary_read); } KALDI_ASSERT(cmvn_stats.NumRows() == 2); KALDI_ASSERT(cmvn_stats.NumCols() > 1); int32 num_dims = cmvn_stats.NumCols() - 1; double frame_count = cmvn_stats(0, cmvn_stats.NumCols() - 1); // buffers for shift and scale Vector shift(num_dims); Vector scale(num_dims); // compute the shift and scale per each dimension for (int32 d = 0; d < num_dims; d++) { BaseFloat mean = cmvn_stats(0, d) / frame_count; BaseFloat var = cmvn_stats(1, d) / frame_count - mean * mean; if (var <= var_floor) { KALDI_WARN << "Very small variance " << var << " flooring to " << var_floor; var = var_floor; } shift(d) = -mean; scale(d) = std_dev / sqrt(var); } // create empty nnet, Nnet nnet; // append shift component to nnet, { AddShift shift_component(shift.Dim(), shift.Dim()); shift_component.SetParams(shift); shift_component.SetLearnRateCoef(learn_rate_coef); nnet.AppendComponent(shift_component); } // append scale component to nnet, { Rescale scale_component(scale.Dim(), scale.Dim()); scale_component.SetParams(scale); scale_component.SetLearnRateCoef(learn_rate_coef); nnet.AppendComponent(scale_component); } // write the nnet, { Output ko(model_out_filename, binary_write); nnet.Write(ko.Stream(), binary_write); KALDI_LOG << "Written cmvn in 'nnet1' model to: " << model_out_filename; } return 0; } catch(const std::exception &e) { std::cerr << e.what(); return -1; } }