// nnetbin/nnet-set-learnrate.cc // Copyright 2016, Brno University of Technology // (author: Katerina Zmolikova, Karel Vesely) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "util/common-utils.h" #include "nnet/nnet-nnet.h" #include "nnet/nnet-component.h" #include "nnet/nnet-affine-transform.h" #include "nnet/nnet-activation.h" int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::nnet1; typedef kaldi::int32 int32; const char *usage = "Sets learning rate coefficient inside of 'nnet1' model\n" "Usage: nnet-set-learnrate --components= --coef= \n" "e.g.: nnet-set-learnrate --components=1:3:5 --coef=0.5 --bias-coef=0.1 nnet-in nnet-out\n"; ParseOptions po(usage); bool binary = true; po.Register("binary", &binary, "Write output in binary mode"); std::string components_str = ""; po.Register("components", &components_str, "Select components by 'csl' of 1..N values. Layout is the same as in " "'nnet-info' output, (example 1:3:5)"); float coef = 1.0, weight_coef = 1.0, bias_coef = 1.0; po.Register("coef", &coef, "Learn-rate coefficient for both weight matrices and biases."); po.Register("weight-coef", &weight_coef, "Learn-rate coefficient for weight matrices " "(used as: coef * weight_coef)."); po.Register("bias-coef", &bias_coef, "Learn-rate coefficient for bias (used as: coef * bias_coef)."); po.Read(argc, argv); if (po.NumArgs() != 2) { po.PrintUsage(); exit(1); } std::string nnet_in_filename = po.GetArg(1), nnet_out_filename = po.GetArg(2); Nnet nnet; nnet.Read(nnet_in_filename); // A vector which contains indices of components, // where we will set the 'learn-rate coefficients', std::vector components; if (components_str != "") { // components were selected by the option, kaldi::SplitStringToIntegers(components_str, ":", false, &components); } else { // otherwise select all the components (1..Ncomp), for (int32 i = 1; i <= nnet.NumComponents(); i++) { components.push_back(i); } } // Setting the learning rate coefficients, for (int32 i = 0; i < components.size(); i++) { if (nnet.GetComponent(components[i]-1).IsUpdatable()) { UpdatableComponent& comp = dynamic_cast(nnet.GetComponent(components[i]-1)); comp.SetLearnRateCoef(coef * weight_coef); // weight matrices, etc., comp.SetBiasLearnRateCoef(coef * bias_coef); // biases, } } // Write the 'nnet1' network, nnet.Write(nnet_out_filename, binary); return 0; } catch(const std::exception &e) { std::cerr << e.what(); return -1; } }