// rnnlmbin/rnnlm-get-word-embedding.cc // Copyright 2015-2017 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "rnnlm/rnnlm-training.h" #include "rnnlm/rnnlm-example-utils.h" #include "nnet3/nnet-utils.h" int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::rnnlm; typedef kaldi::int32 int32; typedef kaldi::int64 int64; const char *usage = "This very simple program multiplies a sparse matrix by a\n" "dense matrix compute the word embedding (which is also a dense matrix).\n" "The sparse matrix is in a text format specific to the RNNLM tools.\n" "Usage:\n" " rnnlm-get-word-embedding [options] \\\n" " \n" " e.g.:\n" " rnnlm-get-word-embedding word_features.txt feat_embedding.mat word_embedding.mat\n" "See also: rnnlm-get-egs, rnnlm-train\n"; ParseOptions po(usage); bool binary = true; po.Register("binary", &binary, "If true, write output in binary format"); po.Read(argc, argv); if (po.NumArgs() != 3) { po.PrintUsage(); exit(1); } std::string word_features_rxfilename = po.GetArg(1), feature_embedding_rxfilename = po.GetArg(2), word_embedding_wxfilename = po.GetArg(3); Matrix feature_embedding_mat; ReadKaldiObject(feature_embedding_rxfilename, &feature_embedding_mat); SparseMatrix word_feature_mat; { Input input(word_features_rxfilename); int32 feature_dim = feature_embedding_mat.NumRows(); ReadSparseWordFeatures(input.Stream(), feature_dim, &word_feature_mat); } Matrix word_embedding_mat(word_feature_mat.NumRows(), feature_embedding_mat.NumCols()); word_embedding_mat.AddSmatMat(1.0, word_feature_mat, kNoTrans, feature_embedding_mat, 0.0); WriteKaldiObject(word_embedding_mat, word_embedding_wxfilename, binary); return 0; } catch(const std::exception &e) { std::cerr << e.what() << '\n'; return -1; } }