// sgmm2/decodable-am-sgmm2.cc // Copyright 2009-2012 Saarland University; Lukas Burget; // Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include using std::vector; #include "sgmm2/decodable-am-sgmm2.h" namespace kaldi { DecodableAmSgmm2::~DecodableAmSgmm2() { if (delete_vars_) { delete gselect_; delete feature_matrix_; delete spk_; } } BaseFloat DecodableAmSgmm2::LogLikelihoodForPdf(int32 frame, int32 pdf_id) { if (frame != cur_frame_) { cur_frame_ = frame; sgmm_cache_.NextFrame(); // it has a frame-index internally but it doesn't // have to match up with our index here, it just needs to be unique. SubVector data(*feature_matrix_, frame); sgmm_.ComputePerFrameVars(data, (*gselect_)[frame], *spk_, &per_frame_vars_); } return sgmm_.LogLikelihood(per_frame_vars_, pdf_id, &sgmm_cache_, spk_, log_prune_); } } // namespace kaldi