// sgmm2bin/sgmm2-align-compiled.cc // Copyright 2009-2012 Microsoft Corporation; Saarland University // 2012-2014 Johns Hopkins University (Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "sgmm2/am-sgmm2.h" #include "hmm/transition-model.h" #include "hmm/hmm-utils.h" #include "fstext/fstext-lib.h" #include "decoder/decoder-wrappers.h" #include "decoder/training-graph-compiler.h" #include "sgmm2/decodable-am-sgmm2.h" #include "lat/kaldi-lattice.h" // for {Compact}LatticeArc int main(int argc, char *argv[]) { try { using namespace kaldi; typedef kaldi::int32 int32; using fst::SymbolTable; using fst::VectorFst; using fst::StdArc; const char *usage = "Align features given [SGMM-based] models.\n" "Usage: sgmm2-align-compiled [options] " " \n" "e.g.: sgmm2-align-compiled 1.mdl ark:graphs.fsts scp:train.scp ark:1.ali\n"; ParseOptions po(usage); bool binary = true; AlignConfig align_config; BaseFloat acoustic_scale = 1.0; BaseFloat transition_scale = 1.0; BaseFloat self_loop_scale = 1.0; BaseFloat log_prune = 5.0; std::string gselect_rspecifier, spkvecs_rspecifier, utt2spk_rspecifier; std::string per_frame_acwt_wspecifier; align_config.Register(&po); po.Register("binary", &binary, "Write output in binary mode"); po.Register("log-prune", &log_prune, "Pruning beam used to reduce number " "of exp() evaluations."); po.Register("spk-vecs", &spkvecs_rspecifier, "Speaker vectors (rspecifier)"); po.Register("utt2spk", &utt2spk_rspecifier, "rspecifier for utterance to speaker map"); po.Register("acoustic-scale", &acoustic_scale, "Scaling factor for acoustic " "likelihoods"); po.Register("transition-scale", &transition_scale, "Scaling factor for " "some transition probabilities [see also self-loop-scale]."); po.Register("self-loop-scale", &self_loop_scale, "Scaling factor for " "self-loop versus non-self-loop probability mass [controls " "most transition probabilities.]"); po.Register("write-per-frame-acoustic-loglikes", &per_frame_acwt_wspecifier, "Wspecifier for table of vectors containing the acoustic log-likelihoods " "per frame for each utterance. E.g. ark:foo/per_frame_logprobs.1.ark"); po.Register("gselect", &gselect_rspecifier, "Precomputed Gaussian indices " "(rspecifier)"); po.Read(argc, argv); if (po.NumArgs() != 4) { po.PrintUsage(); exit(1); } if (gselect_rspecifier == "") KALDI_ERR << "--gselect option is mandatory."; std::string model_in_filename = po.GetArg(1), fst_rspecifier = po.GetArg(2), feature_rspecifier = po.GetArg(3), alignment_wspecifier = po.GetArg(4); TransitionModel trans_model; AmSgmm2 am_sgmm; { bool binary; Input ki(model_in_filename, &binary); trans_model.Read(ki.Stream(), binary); am_sgmm.Read(ki.Stream(), binary); } SequentialTableReader fst_reader(fst_rspecifier); RandomAccessBaseFloatMatrixReader feature_reader(feature_rspecifier); RandomAccessInt32VectorVectorReader gselect_reader(gselect_rspecifier); RandomAccessBaseFloatVectorReaderMapped spkvecs_reader(spkvecs_rspecifier, utt2spk_rspecifier); Int32VectorWriter alignment_writer(alignment_wspecifier); BaseFloatVectorWriter per_frame_acwt_writer(per_frame_acwt_wspecifier); int num_done = 0, num_err = 0, num_retry = 0; double tot_like = 0.0; kaldi::int64 frame_count = 0; for (; !fst_reader.Done(); fst_reader.Next()) { std::string utt = fst_reader.Key(); if (!feature_reader.HasKey(utt)) { KALDI_WARN << "No feature found for utterance " << utt; num_err++; continue; } VectorFst decode_fst(fst_reader.Value()); // stops copy-on-write of the fst by deleting the fst inside the reader, // since we're about to mutate the fst by adding transition probs. fst_reader.FreeCurrent(); const Matrix &features = feature_reader.Value(utt); if (features.NumRows() == 0) { KALDI_WARN << "Zero-length utterance: " << utt; num_err++; continue; } Sgmm2PerSpkDerivedVars spk_vars; if (spkvecs_reader.IsOpen()) { if (spkvecs_reader.HasKey(utt)) { spk_vars.SetSpeakerVector(spkvecs_reader.Value(utt)); am_sgmm.ComputePerSpkDerivedVars(&spk_vars); } else { KALDI_WARN << "Cannot find speaker vector for " << utt; num_err++; continue; } } // else spk_vars is "empty" if (!gselect_reader.HasKey(utt) && gselect_reader.Value(utt).size() != features.NumRows()) { KALDI_WARN << "No Gaussian-selection info available for utterance " << utt << " (or wrong size)"; num_err++; } const std::vector > &gselect = gselect_reader.Value(utt); { // Add transition-probs to the FST. std::vector disambig_syms; // empty. AddTransitionProbs(trans_model, disambig_syms, transition_scale, self_loop_scale, &decode_fst); } DecodableAmSgmm2Scaled sgmm_decodable(am_sgmm, trans_model, features, gselect, log_prune, acoustic_scale, &spk_vars); AlignUtteranceWrapper(align_config, utt, acoustic_scale, &decode_fst, &sgmm_decodable, &alignment_writer, NULL, &num_done, &num_err, &num_retry, &tot_like, &frame_count, &per_frame_acwt_writer); } KALDI_LOG << "Overall log-likelihood per frame is " << (tot_like/frame_count) << " over " << frame_count<< " frames."; KALDI_LOG << "Retried " << num_retry << " out of " << (num_done + num_err) << " utterances."; KALDI_LOG << "Done " << num_done << ", errors on " << num_err; return (num_done != 0 ? 0 : 1); } catch(const std::exception &e) { std::cerr << e.what(); return -1; } }