// sgmm2bin/sgmm2-latgen-faster-parallel.cc // Copyright 2009-2013 Saarland University; Microsoft Corporation; // Johns Hopkins University (author: Daniel Povey) // 2014 Guoguo Chen // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include using std::string; #include "base/kaldi-common.h" #include "util/common-utils.h" #include "sgmm2/am-sgmm2.h" #include "hmm/transition-model.h" #include "fstext/fstext-lib.h" #include "decoder/decoder-wrappers.h" #include "sgmm2/decodable-am-sgmm2.h" #include "util/kaldi-thread.h" #include "base/timer.h" namespace kaldi { // the reference arguments at the beginning are not const as the style guide // requires, but are best viewed as inputs. void ProcessUtterance(const AmSgmm2 &am_sgmm, const TransitionModel &trans_model, double log_prune, double acoustic_scale, const Matrix &features, RandomAccessInt32VectorVectorReader &gselect_reader, RandomAccessBaseFloatVectorReaderMapped &spkvecs_reader, const fst::SymbolTable *word_syms, const std::string &utt, bool determinize, bool allow_partial, Int32VectorWriter *alignments_writer, Int32VectorWriter *words_writer, CompactLatticeWriter *compact_lattice_writer, LatticeWriter *lattice_writer, LatticeFasterDecoder *decoder, // Takes ownership of this. double *like_sum, int64 *frame_sum, int32 *num_done, int32 *num_err, TaskSequencer *sequencer) { using fst::Fst; using std::vector; Sgmm2PerSpkDerivedVars *spk_vars = new Sgmm2PerSpkDerivedVars; // decodable // will take ownership. if (spkvecs_reader.IsOpen()) { if (spkvecs_reader.HasKey(utt)) { spk_vars->SetSpeakerVector(spkvecs_reader.Value(utt)); am_sgmm.ComputePerSpkDerivedVars(spk_vars); } else { KALDI_WARN << "Cannot find speaker vector for " << utt << ", not decoding this utterance"; delete spk_vars; (*num_err)++; return; } } if (!gselect_reader.HasKey(utt) || gselect_reader.Value(utt).size() != features.NumRows()) { KALDI_WARN << "No Gaussian-selection info available for utterance " << utt << " (or wrong size)"; } // decodable will take ownership. vector > *gselect = new std::vector >( gselect_reader.Value(utt)); Matrix *new_feats = new Matrix(features); // decodable // will take ownership of this. // This takes ownership of new_feats, gselect, and spk_vars DecodableAmSgmm2Scaled *sgmm_decodable = new DecodableAmSgmm2Scaled( am_sgmm, trans_model, new_feats, gselect, spk_vars, log_prune, acoustic_scale); // takes ownership of decoder and sgmm_decodable. DecodeUtteranceLatticeFasterClass *task = new DecodeUtteranceLatticeFasterClass( decoder, sgmm_decodable, trans_model, word_syms, utt, acoustic_scale, determinize, allow_partial, alignments_writer, words_writer, compact_lattice_writer, lattice_writer, like_sum, frame_sum, num_done, num_err, NULL); sequencer->Run(task); // takes ownership. } } // end namespace kaldi int main(int argc, char *argv[]) { try { using namespace kaldi; typedef kaldi::int32 int32; using fst::SymbolTable; using fst::Fst; using fst::VectorFst; using fst::StdArc; const char *usage = "Decode features using SGMM-based model. This version accepts the --num-threads\n" "option but otherwise behaves identically to sgmm2-latgen-faster\n" "Usage: sgmm2-latgen-faster-parallel [options] (|) " " [ [] ]\n"; ParseOptions po(usage); BaseFloat acoustic_scale = 0.1; bool allow_partial = false; BaseFloat log_prune = 5.0; string word_syms_filename, gselect_rspecifier, spkvecs_rspecifier, utt2spk_rspecifier; LatticeFasterDecoderConfig decoder_opts; TaskSequencerConfig sequencer_config; // has --num-threads option decoder_opts.Register(&po); sequencer_config.Register(&po); po.Register("acoustic-scale", &acoustic_scale, "Scaling factor for acoustic likelihoods"); po.Register("log-prune", &log_prune, "Pruning beam used to reduce number of exp() evaluations."); po.Register("word-symbol-table", &word_syms_filename, "Symbol table for words [for debug output]"); po.Register("allow-partial", &allow_partial, "Produce output even when final state was not reached"); po.Register("gselect", &gselect_rspecifier, "rspecifier for precomputed per-frame Gaussian indices."); po.Register("spk-vecs", &spkvecs_rspecifier, "rspecifier for speaker vectors"); po.Register("utt2spk", &utt2spk_rspecifier, "rspecifier for utterance to speaker map"); po.Read(argc, argv); if (po.NumArgs() < 4 || po.NumArgs() > 6) { po.PrintUsage(); exit(1); } if (gselect_rspecifier == "") KALDI_ERR << "--gselect option is required."; std::string model_in_filename = po.GetArg(1), fst_in_str = po.GetArg(2), feature_rspecifier = po.GetArg(3), lattice_wspecifier = po.GetArg(4), words_wspecifier = po.GetOptArg(5), alignment_wspecifier = po.GetOptArg(6); double tot_like = 0.0; kaldi::int64 frame_count = 0; int num_done = 0, num_err = 0; Timer timer; Fst *decode_fst = NULL; fst::SymbolTable *word_syms = NULL; TaskSequencer sequencer( sequencer_config); TransitionModel trans_model; kaldi::AmSgmm2 am_sgmm; { bool binary; Input ki(model_in_filename, &binary); trans_model.Read(ki.Stream(), binary); am_sgmm.Read(ki.Stream(), binary); } CompactLatticeWriter compact_lattice_writer; LatticeWriter lattice_writer; bool determinize = decoder_opts.determinize_lattice; if (! (determinize ? compact_lattice_writer.Open(lattice_wspecifier) : lattice_writer.Open(lattice_wspecifier))) KALDI_ERR << "Could not open table for writing lattices: " << lattice_wspecifier; Int32VectorWriter words_writer(words_wspecifier); Int32VectorWriter alignment_writer(alignment_wspecifier); if (word_syms_filename != "") if (!(word_syms = fst::SymbolTable::ReadText(word_syms_filename))) KALDI_ERR << "Could not read symbol table from file " << word_syms_filename; RandomAccessInt32VectorVectorReader gselect_reader(gselect_rspecifier); RandomAccessBaseFloatVectorReaderMapped spkvecs_reader(spkvecs_rspecifier, utt2spk_rspecifier); if (ClassifyRspecifier(fst_in_str, NULL, NULL) == kNoRspecifier) { // a single FST. SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier); // It's important that we initialize decode_fst after feature_reader, as it // can prevent crashes on systems installed without enough virtual memory. // It has to do with what happens on UNIX systems if you call fork() on a // large process: the page-table entries are duplicated, which requires a // lot of virtual memory. decode_fst = fst::ReadFstKaldiGeneric(fst_in_str); timer.Reset(); // exclude graph loading time. { for (; !feature_reader.Done(); feature_reader.Next()) { string utt = feature_reader.Key(); const Matrix &features(feature_reader.Value()); if (features.NumRows() == 0) { KALDI_WARN << "Zero-length utterance: " << utt; num_err++; continue; } // ProcessUtterance will take ownership of this. LatticeFasterDecoder *decoder = new LatticeFasterDecoder( *decode_fst, decoder_opts); ProcessUtterance(am_sgmm, trans_model, log_prune, acoustic_scale, features, gselect_reader, spkvecs_reader, word_syms, utt, determinize, allow_partial, &alignment_writer, &words_writer, &compact_lattice_writer, &lattice_writer, decoder, &tot_like, &frame_count, &num_done, &num_err, &sequencer); } } } else { // We have different FSTs for different utterances. SequentialTableReader fst_reader(fst_in_str); RandomAccessBaseFloatMatrixReader feature_reader(feature_rspecifier); for (; !fst_reader.Done(); fst_reader.Next()) { std::string utt = fst_reader.Key(); if (!feature_reader.HasKey(utt)) { KALDI_WARN << "Not decoding utterance " << utt << " because no features available."; num_err++; continue; } const Matrix &features = feature_reader.Value(utt); if (features.NumRows() == 0) { KALDI_WARN << "Zero-length utterance: " << utt; num_err++; continue; } VectorFst *fst = fst_reader.Value().Copy(); // Note: this does // a shallow copy because OpenFst is "smart" about these things and // does reference counting. The constructor of LatticeFasterDecoder // takes ownership of this FST (note: LatticeFasterDecoder has 2 // constructors, one of which takes ownership and one of which does not). LatticeFasterDecoder *decoder = new LatticeFasterDecoder(decoder_opts, fst); // ProcessUtterance takes ownership of "decoder". ProcessUtterance(am_sgmm, trans_model, log_prune, acoustic_scale, features, gselect_reader, spkvecs_reader, word_syms, utt, determinize, allow_partial, &alignment_writer, &words_writer, &compact_lattice_writer, &lattice_writer, decoder, &tot_like, &frame_count, &num_done, &num_err, &sequencer); } } sequencer.Wait(); // Wait till all tasks are done. delete decode_fst; delete word_syms; double elapsed = timer.Elapsed(); KALDI_LOG << "Decoded with " << sequencer_config.num_threads << " threads."; KALDI_LOG << "Time taken [excluding initialization] "<< elapsed << "s: real-time factor per thread assuming 100 frames/sec is " << (sequencer_config.num_threads * elapsed * 100.0 / frame_count); KALDI_LOG << "Done " << num_done << " utterances, failed for " << num_err; KALDI_LOG << "Overall log-likelihood per frame = " << (tot_like/frame_count) << " over " << frame_count << " frames."; return (num_done != 0 ? 0 : 1); } catch(const std::exception &e) { std::cerr << e.what(); return -1; } }