// sgmm2bin/sgmm2-post-to-gpost.cc // Copyright 2009-2012 Saarland University Microsoft Corporation // Johns Hopkins University (Author: Daniel Povey) // 2014 Guoguo Chen // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "sgmm2/am-sgmm2.h" #include "hmm/transition-model.h" #include "sgmm2/estimate-am-sgmm2.h" #include "hmm/posterior.h" int main(int argc, char *argv[]) { using namespace kaldi; try { const char *usage = "Convert posteriors to Gaussian-level posteriors for SGMM training.\n" "Usage: sgmm2-post-to-gpost [options] " " \n" "e.g.: sgmm2-post-to-gpost 1.mdl 1.ali scp:train.scp 'ark:ali-to-post ark:1.ali ark:-|' ark:-"; ParseOptions po(usage); std::string gselect_rspecifier, spkvecs_rspecifier, utt2spk_rspecifier; po.Register("gselect", &gselect_rspecifier, "Precomputed Gaussian indices (rspecifier)"); po.Register("spk-vecs", &spkvecs_rspecifier, "Speaker vectors (rspecifier)"); po.Register("utt2spk", &utt2spk_rspecifier, "rspecifier for utterance to speaker map"); po.Read(argc, argv); if (po.NumArgs() != 4) { po.PrintUsage(); exit(1); } if (gselect_rspecifier == "") KALDI_ERR << "--gselect option is required"; std::string model_filename = po.GetArg(1), feature_rspecifier = po.GetArg(2), posteriors_rspecifier = po.GetArg(3), gpost_wspecifier = po.GetArg(4); using namespace kaldi; typedef kaldi::int32 int32; AmSgmm2 am_sgmm; TransitionModel trans_model; { bool binary; Input ki(model_filename, &binary); trans_model.Read(ki.Stream(), binary); am_sgmm.Read(ki.Stream(), binary); } double tot_like = 0.0; kaldi::int64 tot_t = 0; SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier); RandomAccessPosteriorReader posteriors_reader(posteriors_rspecifier); RandomAccessInt32VectorVectorReader gselect_reader(gselect_rspecifier); RandomAccessBaseFloatVectorReaderMapped spkvecs_reader(spkvecs_rspecifier, utt2spk_rspecifier); Sgmm2PerFrameDerivedVars per_frame_vars; Sgmm2GauPostWriter gpost_writer(gpost_wspecifier); int32 num_done = 0, num_err = 0; for (; !feature_reader.Done(); feature_reader.Next()) { const Matrix &mat = feature_reader.Value(); std::string utt = feature_reader.Key(); if (!posteriors_reader.HasKey(utt) || posteriors_reader.Value(utt).size() != mat.NumRows()) { KALDI_WARN << "No posteriors available for utterance " << utt << " (or wrong size)"; num_err++; continue; } Posterior posterior = posteriors_reader.Value(utt); if (!gselect_reader.HasKey(utt) || gselect_reader.Value(utt).size() != mat.NumRows()) { KALDI_WARN << "No Gaussian-selection info available for utterance " << utt << " (or wrong size)"; num_err++; continue; } const std::vector > &gselect = gselect_reader.Value(utt); Sgmm2PerSpkDerivedVars spk_vars; if (spkvecs_reader.IsOpen()) { if (spkvecs_reader.HasKey(utt)) { spk_vars.SetSpeakerVector(spkvecs_reader.Value(utt)); am_sgmm.ComputePerSpkDerivedVars(&spk_vars); } else { KALDI_WARN << "Cannot find speaker vector for " << utt; num_err++; continue; } } // else spk_vars is "empty" num_done++; BaseFloat tot_like_this_file = 0.0, tot_weight = 0.0; Sgmm2GauPost gpost(posterior.size()); // posterior.size() == T. SortPosteriorByPdfs(trans_model, &posterior); int32 prev_pdf_id = -1; BaseFloat prev_like = 0; Matrix prev_posterior; for (size_t i = 0; i < posterior.size(); i++) { am_sgmm.ComputePerFrameVars(mat.Row(i), gselect[i], spk_vars, &per_frame_vars); gpost[i].gselect = gselect[i]; gpost[i].tids.resize(posterior[i].size()); gpost[i].posteriors.resize(posterior[i].size()); prev_pdf_id = -1; // Only cache for the same frame. for (size_t j = 0; j < posterior[i].size(); j++) { int32 tid = posterior[i][j].first, // transition identifier. pdf_id = trans_model.TransitionIdToPdf(tid); BaseFloat weight = posterior[i][j].second; gpost[i].tids[j] = tid; if (pdf_id != prev_pdf_id) { // First time see this pdf-id for this frame, update the cached // variables. prev_pdf_id = pdf_id; prev_like = am_sgmm.ComponentPosteriors(per_frame_vars, pdf_id, &spk_vars, &prev_posterior); } gpost[i].posteriors[j] = prev_posterior; tot_like_this_file += prev_like * weight; tot_weight += weight; gpost[i].posteriors[j].Scale(weight); } } KALDI_VLOG(2) << "Average like for this file is " << (tot_like_this_file/posterior.size()) << " over " << posterior.size() <<" frames."; tot_like += tot_like_this_file; tot_t += posterior.size(); if (num_done % 10 == 0) KALDI_LOG << "Avg like per frame so far is " << (tot_like/tot_t); gpost_writer.Write(utt, gpost); } KALDI_LOG << "Overall like per frame (Gaussian only) = " << (tot_like/tot_t) << " over " << tot_t << " frames."; KALDI_LOG << "Done " << num_done << " files, " << num_err << " with errors."; return (num_done != 0 ? 0 : 1); } catch(const std::exception &e) { std::cerr << e.what(); return -1; } }