// tfrnnlmbin/lattice-lmrescore-tf-rnnlm-pruned.cc // Copyright (C) 2017 Intellisist, Inc. (Author: Hainan Xu) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "fstext/fstext-lib.h" #include "lat/kaldi-lattice.h" #include "lat/lattice-functions.h" #include "lat/compose-lattice-pruned.h" #include "lm/const-arpa-lm.h" #include "util/common-utils.h" // This should come after any OpenFst includes to avoid using the wrong macros. #include "tfrnnlm/tensorflow-rnnlm.h" int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::tf_rnnlm; typedef kaldi::int32 int32; typedef kaldi::int64 int64; using fst::SymbolTable; using fst::VectorFst; using fst::StdArc; using fst::ReadFstKaldi; const char *usage = "Rescores lattice with rnnlm that is trained with TensorFlow.\n" "An example script for training and rescoring with the TensorFlow\n" "RNNLM is at egs/ami/s5/local/tfrnnlm/run_lstm_fast.sh\n" "\n" "Usage: lattice-lmrescore-tf-rnnlm-pruned [options] [unk-file] \\\n" " \\\n" " \n" " e.g.: lattice-lmrescore-tf-rnnlm-pruned --lm-scale=0.5 data/tensorflow_lstm/unkcounts.txt \\\n" " data/test/G.fst data/lang/words.txt data/tensorflow_lstm/rnnwords.txt \\\n" " data/tensorflow_lstm/rnnlm ark:in.lats ark:out.lats\n\n" " e.g.: lattice-lmrescore-tf-rnnlm-pruned --lm-scale=0.5 data/tensorflow_lstm/unkcounts.txt \\\n" " data/test_fg/G.carpa data/lang/words.txt data/tensorflow_lstm/rnnwords.txt \\\n" " data/tensorflow_lstm/rnnlm ark:in.lats ark:out.lats\n"; ParseOptions po(usage); int32 max_ngram_order = 3; BaseFloat lm_scale = 0.5; BaseFloat acoustic_scale = 0.1; bool use_carpa = false; po.Register("lm-scale", &lm_scale, "Scaling factor for ; its negative " "will be applied to ."); po.Register("acoustic-scale", &acoustic_scale, "Scaling factor for acoustic " "probabilities (e.g. 0.1 for non-chain systems); important because " "of its effect on pruning."); po.Register("max-ngram-order", &max_ngram_order, "If positive, allow RNNLM histories longer than this to be identified " "with each other for rescoring purposes (an approximation that " "saves time and reduces output lattice size)."); po.Register("use-const-arpa", &use_carpa, "If true, read the old-LM file " "as a const-arpa file as opposed to an FST file"); KaldiTfRnnlmWrapperOpts opts; ComposeLatticePrunedOptions compose_opts; opts.Register(&po); compose_opts.Register(&po); po.Read(argc, argv); if (po.NumArgs() != 7 && po.NumArgs() != 6) { po.PrintUsage(); exit(1); } std::string lm_to_subtract_rxfilename, lats_rspecifier, rnn_word_list, word_symbols_rxfilename, rnnlm_rxfilename, lats_wspecifier, unk_prob_file; if (po.NumArgs() == 6) { lm_to_subtract_rxfilename = po.GetArg(1), word_symbols_rxfilename = po.GetArg(2); rnn_word_list = po.GetArg(3); rnnlm_rxfilename = po.GetArg(4); lats_rspecifier = po.GetArg(5); lats_wspecifier = po.GetArg(6); } else { lm_to_subtract_rxfilename = po.GetArg(1), word_symbols_rxfilename = po.GetArg(2); unk_prob_file = po.GetArg(3); rnn_word_list = po.GetArg(4); rnnlm_rxfilename = po.GetArg(5); lats_rspecifier = po.GetArg(6); lats_wspecifier = po.GetArg(7); } // for G.fst fst::ScaleDeterministicOnDemandFst *lm_to_subtract_det_scale = NULL; fst::BackoffDeterministicOnDemandFst *lm_to_subtract_det_backoff = NULL; VectorFst *lm_to_subtract_fst = NULL; // for G.carpa ConstArpaLm* const_arpa = NULL; fst::DeterministicOnDemandFst *carpa_lm_to_subtract_fst = NULL; KALDI_LOG << "Reading old LMs..."; if (use_carpa) { const_arpa = new ConstArpaLm(); ReadKaldiObject(lm_to_subtract_rxfilename, const_arpa); carpa_lm_to_subtract_fst = new ConstArpaLmDeterministicFst(*const_arpa); lm_to_subtract_det_scale = new fst::ScaleDeterministicOnDemandFst(-lm_scale, carpa_lm_to_subtract_fst); } else { lm_to_subtract_fst = fst::ReadAndPrepareLmFst( lm_to_subtract_rxfilename); lm_to_subtract_det_backoff = new fst::BackoffDeterministicOnDemandFst(*lm_to_subtract_fst); lm_to_subtract_det_scale = new fst::ScaleDeterministicOnDemandFst(-lm_scale, lm_to_subtract_det_backoff); } // Reads the TF language model. KaldiTfRnnlmWrapper rnnlm(opts, rnn_word_list, word_symbols_rxfilename, unk_prob_file, rnnlm_rxfilename); // Reads and writes as compact lattice. SequentialCompactLatticeReader compact_lattice_reader(lats_rspecifier); CompactLatticeWriter compact_lattice_writer(lats_wspecifier); int32 n_done = 0, n_fail = 0; TfRnnlmDeterministicFst* lm_to_add_orig = new TfRnnlmDeterministicFst(max_ngram_order, &rnnlm); for (; !compact_lattice_reader.Done(); compact_lattice_reader.Next()) { fst::DeterministicOnDemandFst *lm_to_add = new fst::ScaleDeterministicOnDemandFst(lm_scale, lm_to_add_orig); std::string key = compact_lattice_reader.Key(); CompactLattice clat = compact_lattice_reader.Value(); compact_lattice_reader.FreeCurrent(); // Before composing with the LM FST, we scale the lattice weights // by the inverse of "lm_scale". We'll later scale by "lm_scale". // We do it this way so we can determinize and it will give the // right effect (taking the "best path" through the LM) regardless // of the sign of lm_scale. if (acoustic_scale != 1.0) { fst::ScaleLattice(fst::AcousticLatticeScale(acoustic_scale), &clat); } TopSortCompactLatticeIfNeeded(&clat); fst::ComposeDeterministicOnDemandFst combined_lms( lm_to_subtract_det_scale, lm_to_add); // Composes lattice with language model. CompactLattice composed_clat; ComposeCompactLatticePruned(compose_opts, clat, &combined_lms, &composed_clat); lm_to_add_orig->Clear(); if (composed_clat.NumStates() == 0) { // Something went wrong. A warning will already have been printed. n_fail++; } else { if (acoustic_scale != 1.0) { if (acoustic_scale == 0.0) KALDI_ERR << "Acoustic scale cannot be zero."; fst::ScaleLattice(fst::AcousticLatticeScale(1.0 / acoustic_scale), &composed_clat); } compact_lattice_writer.Write(key, composed_clat); n_done++; } delete lm_to_add; } delete lm_to_subtract_fst; delete lm_to_add_orig; delete lm_to_subtract_det_backoff; delete lm_to_subtract_det_scale; delete const_arpa; delete carpa_lm_to_subtract_fst; KALDI_LOG << "Done " << n_done << " lattices, failed for " << n_fail; return (n_done != 0 ? 0 : 1); } catch(const std::exception &e) { std::cerr << e.what(); return -1; } }