// tfrnnlmbin/lattice-lmrescore-tf-rnnlm.cc // Copyright (C) 2017 Intellisist, Inc. (Author: Hainan Xu) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "fstext/fstext-lib.h" #include "lat/kaldi-lattice.h" #include "lat/lattice-functions.h" #include "util/common-utils.h" // This should come after any OpenFst includes to avoid using the wrong macros. #include "tfrnnlm/tensorflow-rnnlm.h" int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::tf_rnnlm; typedef kaldi::int32 int32; typedef kaldi::int64 int64; const char *usage = "Rescores lattice with rnnlm that is trained with TensorFlow.\n" "An example script for training and rescoring with the TensorFlow\n" "RNNLM is at egs/ami/s5/local/tfrnnlm/run_lstm_fast.sh\n" "\n" "Usage: lattice-lmrescore-tf-rnnlm [options] [unk-file] \\\n" " \\\n" " \n" " e.g.: lattice-lmrescore-tf-rnnlm --lm-scale=0.5 " " data/tensorflow_lstm/unkcounts.txt data/tensorflow_lstm/rnnwords.txt \\\n" " data/lang/words.txt ark:in.lats data/tensorflow_lstm/rnnlm ark:out.lats\n"; ParseOptions po(usage); int32 max_ngram_order = 3; BaseFloat lm_scale = 0.5; po.Register("lm-scale", &lm_scale, "Scaling factor for language model " "costs"); po.Register("max-ngram-order", &max_ngram_order, "If positive, allow RNNLM histories longer than this to be identified " "with each other for rescoring purposes (an approximation that " "saves time and reduces output lattice size)."); KaldiTfRnnlmWrapperOpts opts; opts.Register(&po); po.Read(argc, argv); if (po.NumArgs() != 5 && po.NumArgs() != 6) { po.PrintUsage(); exit(1); } std::string lats_rspecifier, rnn_word_list, word_symbols_rxfilename, rnnlm_rxfilename, lats_wspecifier, unk_prob_file; if (po.NumArgs() == 5) { rnn_word_list = po.GetArg(1); word_symbols_rxfilename = po.GetArg(2); lats_rspecifier = po.GetArg(3); rnnlm_rxfilename = po.GetArg(4); lats_wspecifier = po.GetArg(5); } else { unk_prob_file = po.GetArg(1); rnn_word_list = po.GetArg(2); word_symbols_rxfilename = po.GetArg(3); lats_rspecifier = po.GetArg(4); rnnlm_rxfilename = po.GetArg(5); lats_wspecifier = po.GetArg(6); } // Reads the TF language model. KaldiTfRnnlmWrapper rnnlm(opts, rnn_word_list, word_symbols_rxfilename, unk_prob_file, rnnlm_rxfilename); // Reads and writes as compact lattice. SequentialCompactLatticeReader compact_lattice_reader(lats_rspecifier); CompactLatticeWriter compact_lattice_writer(lats_wspecifier); int32 n_done = 0, n_fail = 0; for (; !compact_lattice_reader.Done(); compact_lattice_reader.Next()) { std::string key = compact_lattice_reader.Key(); CompactLattice &clat = compact_lattice_reader.Value(); if (lm_scale != 0.0) { // Before composing with the LM FST, we scale the lattice weights // by the inverse of "lm_scale". We'll later scale by "lm_scale". // We do it this way so we can determinize and it will give the // right effect (taking the "best path" through the LM) regardless // of the sign of lm_scale. fst::ScaleLattice(fst::GraphLatticeScale(1.0 / lm_scale), &clat); ArcSort(&clat, fst::OLabelCompare()); // Wraps the rnnlm into FST. We re-create it for each lattice to prevent // memory usage increasing with time. TfRnnlmDeterministicFst rnnlm_fst(max_ngram_order, &rnnlm); // Composes lattice with language model. CompactLattice composed_clat; ComposeCompactLatticeDeterministic(clat, &rnnlm_fst, &composed_clat); // Determinizes the composed lattice. Lattice composed_lat; ConvertLattice(composed_clat, &composed_lat); Invert(&composed_lat); CompactLattice determinized_clat; DeterminizeLattice(composed_lat, &determinized_clat); fst::ScaleLattice(fst::GraphLatticeScale(lm_scale), &determinized_clat); if (determinized_clat.Start() == fst::kNoStateId) { KALDI_WARN << "Empty lattice for utterance " << key << " (incompatible LM?)"; n_fail++; } else { compact_lattice_writer.Write(key, determinized_clat); n_done++; } } else { // Zero scale so nothing to do. n_done++; compact_lattice_writer.Write(key, clat); } } KALDI_LOG << "Done " << n_done << " lattices, failed for " << n_fail; return (n_done != 0 ? 0 : 1); } catch(const std::exception &e) { std::cerr << e.what(); return -1; } }