// transform/compressed-transform-stats.h // Copyright 2012 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #ifndef KALDI_TRANSFORM_COMPRESSED_TRANSFORM_STATS_H_ #define KALDI_TRANSFORM_COMPRESSED_TRANSFORM_STATS_H_ #include #include "transform/transform-common.h" namespace kaldi { // The purpose of this class is to compress the AffineXformStats into less // memory for easier storage and transmission across the network. It was a // feature requested by particular user of Kaldi. It's based on the // CompressedMatrix class, which compresses a matrix into around one byte per // element, but before applying that, we first use various techniques to // normalize the range of elements of the stats and to make it so that the // compressed G matrices will still be positive definite. [Basically, we // compress the Cholesky of each G_i, and we first normalize all the G_i to have // the same trace.] We also mess with the K stats a bit, to ensure that the // derivative of the "compressed" transform taken where the transformation // matrix is the "default" matrix, is the same as the derivative of the // un-compressed matrix. [I.e. we correct the stored K to account for the // compression of G.] class CompressedAffineXformStats { public: CompressedAffineXformStats(): beta_(0.0) { } CompressedAffineXformStats(const AffineXformStats &input) { CopyFromAffineXformStats(input); } void CopyFromAffineXformStats(const AffineXformStats &input); void CopyToAffineXformStats(AffineXformStats *output) const; void Write(std::ostream &os, bool binary) const; void Read(std::istream &is, bool binary); private: // Note: normally we don't use float, only BaseFloat. In this case // it seems more appropriate to use float (since the stuff in G_ is // already a lot more approximate than float.) float beta_; Matrix K_; CompressedMatrix G_; // This dim x [ 1 + (0.5*(dim+1)*(dim+2))] matrix // stores the contents of the G_ matrix of the AffineXform Stats, in a // compressed form. // Convert one G matrix into linearized, normalized form ready // for compression. static void PrepareOneG(const SpMatrix &Gi, double beta, SubVector *linearized); // Reverse the process of PrepareOneG. static void ExtractOneG(const SubVector &linearized, double beta, SpMatrix *Gi); }; } // namespace kaldi #endif // KALDI_TRANSFORM_COMPRESSED_TRANSFORM_STATS_H_