// transform/regression-tree.h // Copyright 2009-2011 Saarland University // Author: Arnab Ghoshal // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #ifndef KALDI_TRANSFORM_REGRESSION_TREE_H_ #define KALDI_TRANSFORM_REGRESSION_TREE_H_ #include #include #include "base/kaldi-common.h" #include "tree/cluster-utils.h" #include "gmm/am-diag-gmm.h" #include "transform/transform-common.h" namespace kaldi { /** \class RegressionTree * A regression tree is a clustering of Gaussian densities in an acoustic * model, such that the group of Gaussians at each node of the tree are * transformed by the same transform. Each node is thus called a regression * class. */ class RegressionTree { public: RegressionTree() {} /// Top-down clustering of the Gaussians in a model based on their means. /// If sil_indices is nonempty, will put silence in a special class /// using a top-level split. void BuildTree(const Vector &state_occs, const std::vector &sil_indices, const AmDiagGmm &am, int32 max_clusters); /// Parses the regression tree and finds the nodes whose occupancies (read /// from stats_in) are greater than min_count. The regclass_out vector has /// size equal to number of baseclasses, and contains the regression class /// index for each baseclass. The stats_out vector has size equal to number /// of regression classes. Return value is true if at least one regression /// class passed the count cutoff, false otherwise. bool GatherStats(const std::vector &stats_in, double min_count, std::vector *regclasses_out, std::vector *stats_out) const; void Write(std::ostream &out, bool binary) const; void Read(std::istream &in, bool binary, const AmDiagGmm &am); /// Accessors (const) int32 NumBaseclasses() const { return num_baseclasses_; } const std::vector< std::pair >& GetBaseclass(int32 bclass) const { return baseclasses_[bclass]; } int32 Gauss2BaseclassId(size_t pdf_id, size_t gauss_id) const { return gauss2bclass_[pdf_id][gauss_id]; } private: int32 num_nodes_; ///< Total (non-leaf+leaf) nodes /// For each node, index of its parent: size = num_nodes_ /// If 0 <= i < num_baseclasses_, then i is a leaf of the tree (a base class); /// else a non-leaf node. parents_[i] > i, except for the top node /// (last-numbered one), for which parents_[i] == i. std::vector parents_; int32 num_baseclasses_; ///< Number of leaf nodes /// Each baseclass (leaf of regression tree) is a vector of Gaussian indices. /// Each Gaussian in the model is indexed by (pdf, gaussian) indices pair. std::vector< std::vector< std::pair > > baseclasses_; /// Mapping from (pdf, gaussian) indices to baseclasses std::vector< std::vector > gauss2bclass_; void MakeGauss2Bclass(const AmDiagGmm &am); // Cannot have copy constructor and assigment operator KALDI_DISALLOW_COPY_AND_ASSIGN(RegressionTree); }; } // namespace kaldi #endif // KALDI_TRANSFORM_REGRESSION_TREE_H_