/****************************************************************************** * Copyright (c) 2011, Duane Merrill. All rights reserved. * Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ******************************************************************************/ /** * \file * cub::DeviceRunLengthEncode provides device-wide, parallel operations for computing a run-length encoding across a sequence of data items residing within device-accessible memory. */ #pragma once #include #include #include "dispatch/dispatch_rle.cuh" #include "dispatch/dispatch_reduce_by_key.cuh" #include "../util_namespace.cuh" /// Optional outer namespace(s) CUB_NS_PREFIX /// CUB namespace namespace cub { /** * \brief DeviceRunLengthEncode provides device-wide, parallel operations for demarcating "runs" of same-valued items within a sequence residing within device-accessible memory. ![](run_length_encode_logo.png) * \ingroup SingleModule * * \par Overview * A run-length encoding * computes a simple compressed representation of a sequence of input elements such that each * maximal "run" of consecutive same-valued data items is encoded as a single data value along with a * count of the elements in that run. * * \par Usage Considerations * \cdp_class{DeviceRunLengthEncode} * * \par Performance * \linear_performance{run-length encode} * * \par * The following chart illustrates DeviceRunLengthEncode::RunLengthEncode performance across * different CUDA architectures for \p int32 items. * Segments have lengths uniformly sampled from [1,1000]. * * \image html rle_int32_len_500.png * * \par * \plots_below * */ struct DeviceRunLengthEncode { /** * \brief Computes a run-length encoding of the sequence \p d_in. * * \par * - For the ith run encountered, the first key of the run and its length are written to * d_unique_out[i] and d_counts_out[i], * respectively. * - The total number of runs encountered is written to \p d_num_runs_out. * - The == equality operator is used to determine whether values are equivalent * - \devicestorage * * \par Performance * The following charts illustrate saturated encode performance across different * CUDA architectures for \p int32 and \p int64 items, respectively. Segments have * lengths uniformly sampled from [1,1000]. * * \image html rle_int32_len_500.png * \image html rle_int64_len_500.png * * \par * The following charts are similar, but with segment lengths uniformly sampled from [1,10]: * * \image html rle_int32_len_5.png * \image html rle_int64_len_5.png * * \par Snippet * The code snippet below illustrates the run-length encoding of a sequence of \p int values. * \par * \code * #include // or equivalently * * // Declare, allocate, and initialize device-accessible pointers for input and output * int num_items; // e.g., 8 * int *d_in; // e.g., [0, 2, 2, 9, 5, 5, 5, 8] * int *d_unique_out; // e.g., [ , , , , , , , ] * int *d_counts_out; // e.g., [ , , , , , , , ] * int *d_num_runs_out; // e.g., [ ] * ... * * // Determine temporary device storage requirements * void *d_temp_storage = NULL; * size_t temp_storage_bytes = 0; * cub::DeviceRunLengthEncode::Encode(d_temp_storage, temp_storage_bytes, d_in, d_unique_out, d_counts_out, d_num_runs_out, num_items); * * // Allocate temporary storage * cudaMalloc(&d_temp_storage, temp_storage_bytes); * * // Run encoding * cub::DeviceRunLengthEncode::Encode(d_temp_storage, temp_storage_bytes, d_in, d_unique_out, d_counts_out, d_num_runs_out, num_items); * * // d_unique_out <-- [0, 2, 9, 5, 8] * // d_counts_out <-- [1, 2, 1, 3, 1] * // d_num_runs_out <-- [5] * * \endcode * * \tparam InputIteratorT [inferred] Random-access input iterator type for reading input items \iterator * \tparam UniqueOutputIteratorT [inferred] Random-access output iterator type for writing unique output items \iterator * \tparam LengthsOutputIteratorT [inferred] Random-access output iterator type for writing output counts \iterator * \tparam NumRunsOutputIteratorT [inferred] Output iterator type for recording the number of runs encountered \iterator */ template < typename InputIteratorT, typename UniqueOutputIteratorT, typename LengthsOutputIteratorT, typename NumRunsOutputIteratorT> CUB_RUNTIME_FUNCTION __forceinline__ static cudaError_t Encode( void* d_temp_storage, ///< [in] %Device-accessible allocation of temporary storage. When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done. size_t &temp_storage_bytes, ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation InputIteratorT d_in, ///< [in] Pointer to the input sequence of keys UniqueOutputIteratorT d_unique_out, ///< [out] Pointer to the output sequence of unique keys (one key per run) LengthsOutputIteratorT d_counts_out, ///< [out] Pointer to the output sequence of run-lengths (one count per run) NumRunsOutputIteratorT d_num_runs_out, ///< [out] Pointer to total number of runs int num_items, ///< [in] Total number of associated key+value pairs (i.e., the length of \p d_in_keys and \p d_in_values) cudaStream_t stream = 0, ///< [in] [optional] CUDA stream to launch kernels within. Default is stream0. bool debug_synchronous = false) ///< [in] [optional] Whether or not to synchronize the stream after every kernel launch to check for errors. May cause significant slowdown. Default is \p false. { typedef int OffsetT; // Signed integer type for global offsets typedef NullType* FlagIterator; // FlagT iterator type (not used) typedef NullType SelectOp; // Selection op (not used) typedef Equality EqualityOp; // Default == operator typedef cub::Sum ReductionOp; // Value reduction operator // The lengths output value type typedef typename If<(Equals::value_type, void>::VALUE), // LengthT = (if output iterator's value type is void) ? OffsetT, // ... then the OffsetT type, typename std::iterator_traits::value_type>::Type LengthT; // ... else the output iterator's value type // Generator type for providing 1s values for run-length reduction typedef ConstantInputIterator LengthsInputIteratorT; return DispatchReduceByKey::Dispatch( d_temp_storage, temp_storage_bytes, d_in, d_unique_out, LengthsInputIteratorT((LengthT) 1), d_counts_out, d_num_runs_out, EqualityOp(), ReductionOp(), num_items, stream, debug_synchronous); } /** * \brief Enumerates the starting offsets and lengths of all non-trivial runs (of length > 1) of same-valued keys in the sequence \p d_in. * * \par * - For the ith non-trivial run, the run's starting offset * and its length are written to d_offsets_out[i] and * d_lengths_out[i], respectively. * - The total number of runs encountered is written to \p d_num_runs_out. * - The == equality operator is used to determine whether values are equivalent * - \devicestorage * * \par Performance * * \par Snippet * The code snippet below illustrates the identification of non-trivial runs within a sequence of \p int values. * \par * \code * #include // or equivalently * * // Declare, allocate, and initialize device-accessible pointers for input and output * int num_items; // e.g., 8 * int *d_in; // e.g., [0, 2, 2, 9, 5, 5, 5, 8] * int *d_offsets_out; // e.g., [ , , , , , , , ] * int *d_lengths_out; // e.g., [ , , , , , , , ] * int *d_num_runs_out; // e.g., [ ] * ... * * // Determine temporary device storage requirements * void *d_temp_storage = NULL; * size_t temp_storage_bytes = 0; * cub::DeviceRunLengthEncode::NonTrivialRuns(d_temp_storage, temp_storage_bytes, d_in, d_offsets_out, d_lengths_out, d_num_runs_out, num_items); * * // Allocate temporary storage * cudaMalloc(&d_temp_storage, temp_storage_bytes); * * // Run encoding * cub::DeviceRunLengthEncode::NonTrivialRuns(d_temp_storage, temp_storage_bytes, d_in, d_offsets_out, d_lengths_out, d_num_runs_out, num_items); * * // d_offsets_out <-- [1, 4] * // d_lengths_out <-- [2, 3] * // d_num_runs_out <-- [2] * * \endcode * * \tparam InputIteratorT [inferred] Random-access input iterator type for reading input items \iterator * \tparam OffsetsOutputIteratorT [inferred] Random-access output iterator type for writing run-offset values \iterator * \tparam LengthsOutputIteratorT [inferred] Random-access output iterator type for writing run-length values \iterator * \tparam NumRunsOutputIteratorT [inferred] Output iterator type for recording the number of runs encountered \iterator */ template < typename InputIteratorT, typename OffsetsOutputIteratorT, typename LengthsOutputIteratorT, typename NumRunsOutputIteratorT> CUB_RUNTIME_FUNCTION __forceinline__ static cudaError_t NonTrivialRuns( void* d_temp_storage, ///< [in] %Device-accessible allocation of temporary storage. When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done. size_t &temp_storage_bytes, ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation InputIteratorT d_in, ///< [in] Pointer to input sequence of data items OffsetsOutputIteratorT d_offsets_out, ///< [out] Pointer to output sequence of run-offsets (one offset per non-trivial run) LengthsOutputIteratorT d_lengths_out, ///< [out] Pointer to output sequence of run-lengths (one count per non-trivial run) NumRunsOutputIteratorT d_num_runs_out, ///< [out] Pointer to total number of runs (i.e., length of \p d_offsets_out) int num_items, ///< [in] Total number of associated key+value pairs (i.e., the length of \p d_in_keys and \p d_in_values) cudaStream_t stream = 0, ///< [in] [optional] CUDA stream to launch kernels within. Default is stream0. bool debug_synchronous = false) ///< [in] [optional] Whether or not to synchronize the stream after every kernel launch to check for errors. May cause significant slowdown. Default is \p false. { typedef int OffsetT; // Signed integer type for global offsets typedef Equality EqualityOp; // Default == operator return DeviceRleDispatch::Dispatch( d_temp_storage, temp_storage_bytes, d_in, d_offsets_out, d_lengths_out, d_num_runs_out, EqualityOp(), num_items, stream, debug_synchronous); } }; } // CUB namespace CUB_NS_POSTFIX // Optional outer namespace(s)