/****************************************************************************** * Copyright (c) 2011, Duane Merrill. All rights reserved. * Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ******************************************************************************/ /** * \file * cub::DeviceSpmv provides device-wide parallel operations for performing sparse-matrix * vector multiplication (SpMV). */ #pragma once #include #include #include #include "dispatch/dispatch_spmv_orig.cuh" #include "../util_namespace.cuh" /// Optional outer namespace(s) CUB_NS_PREFIX /// CUB namespace namespace cub { /** * \brief DeviceSpmv provides device-wide parallel operations for performing sparse-matrix * dense-vector multiplication (SpMV). * \ingroup SingleModule * * \par Overview * The [SpMV computation](http://en.wikipedia.org/wiki/Sparse_matrix-vector_multiplication) * performs the matrix-vector operation * y = alpha*A*x + beta*y, * where: * - A is an mxn sparse matrix whose non-zero structure is specified in * [compressed-storage-row (CSR) format](http://en.wikipedia.org/wiki/Sparse_matrix#Compressed_row_Storage_.28CRS_or_CSR.29) * (i.e., three arrays: values, row_offsets, and column_indices) * - x and y are dense vectors * - alpha and beta are scalar multiplicands * * \par Usage Considerations * \cdp_class{DeviceSpmv} * */ struct DeviceSpmv { /******************************************************************//** * \name CSR matrix operations *********************************************************************/ //@{ /** * \brief This function performs the matrix-vector operation y = A*x. * * \par Snippet * The code snippet below illustrates SpMV upon a 9x9 CSR matrix A * representing a 3x3 lattice (24 non-zeros). * * \par * \code * #include // or equivalently * * // Declare, allocate, and initialize device-accessible pointers for input matrix A, input vector x, * // and output vector y * int num_rows = 9; * int num_cols = 9; * int num_nonzeros = 24; * * float* d_values; // e.g., [1, 1, 1, 1, 1, 1, 1, 1, * // 1, 1, 1, 1, 1, 1, 1, 1, * // 1, 1, 1, 1, 1, 1, 1, 1] * * int* d_column_indices; // e.g., [1, 3, 0, 2, 4, 1, 5, 0, * // 4, 6, 1, 3, 5, 7, 2, 4, * // 8, 3, 7, 4, 6, 8, 5, 7] * * int* d_row_offsets; // e.g., [0, 2, 5, 7, 10, 14, 17, 19, 22, 24] * * float* d_vector_x; // e.g., [1, 1, 1, 1, 1, 1, 1, 1, 1] * float* d_vector_y; // e.g., [ , , , , , , , , ] * ... * * // Determine temporary device storage requirements * void* d_temp_storage = NULL; * size_t temp_storage_bytes = 0; * cub::DeviceSpmv::CsrMV(d_temp_storage, temp_storage_bytes, d_values, * d_row_offsets, d_column_indices, d_vector_x, d_vector_y, * num_rows, num_cols, num_nonzeros, alpha, beta); * * // Allocate temporary storage * cudaMalloc(&d_temp_storage, temp_storage_bytes); * * // Run SpMV * cub::DeviceSpmv::CsrMV(d_temp_storage, temp_storage_bytes, d_values, * d_row_offsets, d_column_indices, d_vector_x, d_vector_y, * num_rows, num_cols, num_nonzeros, alpha, beta); * * // d_vector_y <-- [2, 3, 2, 3, 4, 3, 2, 3, 2] * * \endcode * * \tparam ValueT [inferred] Matrix and vector value type (e.g., /p float, /p double, etc.) */ template < typename ValueT> CUB_RUNTIME_FUNCTION static cudaError_t CsrMV( void* d_temp_storage, ///< [in] %Device-accessible allocation of temporary storage. When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done. size_t& temp_storage_bytes, ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation ValueT* d_values, ///< [in] Pointer to the array of \p num_nonzeros values of the corresponding nonzero elements of matrix A. int* d_row_offsets, ///< [in] Pointer to the array of \p m + 1 offsets demarcating the start of every row in \p d_column_indices and \p d_values (with the final entry being equal to \p num_nonzeros) int* d_column_indices, ///< [in] Pointer to the array of \p num_nonzeros column-indices of the corresponding nonzero elements of matrix A. (Indices are zero-valued.) ValueT* d_vector_x, ///< [in] Pointer to the array of \p num_cols values corresponding to the dense input vector x ValueT* d_vector_y, ///< [out] Pointer to the array of \p num_rows values corresponding to the dense output vector y int num_rows, ///< [in] number of rows of matrix A. int num_cols, ///< [in] number of columns of matrix A. int num_nonzeros, ///< [in] number of nonzero elements of matrix A. cudaStream_t stream = 0, ///< [in] [optional] CUDA stream to launch kernels within. Default is stream0. bool debug_synchronous = false) ///< [in] [optional] Whether or not to synchronize the stream after every kernel launch to check for errors. May cause significant slowdown. Default is \p false. { SpmvParams spmv_params; spmv_params.d_values = d_values; spmv_params.d_row_end_offsets = d_row_offsets + 1; spmv_params.d_column_indices = d_column_indices; spmv_params.d_vector_x = d_vector_x; spmv_params.d_vector_y = d_vector_y; spmv_params.num_rows = num_rows; spmv_params.num_cols = num_cols; spmv_params.num_nonzeros = num_nonzeros; spmv_params.alpha = 1.0; spmv_params.beta = 0.0; return DispatchSpmv::Dispatch( d_temp_storage, temp_storage_bytes, spmv_params, stream, debug_synchronous); } //@} end member group }; } // CUB namespace CUB_NS_POSTFIX // Optional outer namespace(s)