Blame view
Scripts/steps/.svn/text-base/decode_sgmm_fromlats.sh.svn-base
12.4 KB
ec85f8892 first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
#!/bin/bash # Copyright 2012 Johns Hopkins University (Author: Daniel Povey). Apache 2.0. # This script does decoding with an SGMM system, with speaker vectors. # If the SGMM system was # built on top of fMLLR transforms from a conventional system, you should # provide the --transform-dir option. # This script does not use a decoding graph, but instead you provide # a previous decoding directory with lattices in it. This script will only # make use of the word sequences in the lattices; it limits the decoding # to those sequences. You should also provide a "lang" directory from # which this script will use the G.fst and L.fst. # Begin configuration section. stage=1 alignment_model= transform_dir= # dir to find fMLLR transforms. acwt=0.08333 # Just a default value, used for adaptation and beam-pruning.. batch_size=75 # Limits memory blowup in compile-train-graphs-fsts cmd=run.pl beam=20.0 gselect=15 # Number of Gaussian-selection indices for SGMMs. [Note: # the first_pass_gselect variable is used for the 1st pass of # decoding and can be tighter. first_pass_gselect=3 # Use a smaller number of Gaussian-selection indices in # the 1st pass of decoding (lattice generation). max_active=7000 lat_beam=8.0 # Beam we use in lattice generation. vecs_beam=4.0 # Beam we use to prune lattices while getting posteriors for # speaker-vector computation. Can be quite tight (actually we could # probably just do best-path. use_fmllr=false fmllr_iters=10 fmllr_min_count=1000 scale_opts="--transition-scale=1.0 --self-loop-scale=0.1" # End configuration section. echo "$0 $@" # Print the command line for logging [ -f ./path.sh ] && . ./path.sh; # source the path. . parse_options.sh || exit 1; if [ $# -ne 4 ]; then echo "Usage: steps/decode_sgmm_fromlats.sh [options] <data-dir> <lang-dir> <old-decode-dir> <decode-dir>" echo "" echo "main options (for others, see top of script file)" echo " --transform-dir <decoding-dir> # directory of previous decoding" echo " # where we can find transforms for SAT systems." echo " --alignment-model <ali-mdl> # Model for the first-pass decoding." echo " --config <config-file> # config containing options" echo " --cmd <cmd> # Command to run in parallel with" echo " --beam <beam> # Decoding beam; default 13.0" exit 1; fi data=$1 lang=$2 olddir=$3 dir=$4 srcdir=`dirname $dir` for f in $data/feats.scp $lang/G.fst $lang/L_disambig.fst $lang/phones/disambig.int \ $srcdir/final.mdl $srcdir/tree $olddir/lat.1.gz; do [ ! -f $f ] && echo "$0: no such file $f" && exit 1; done nj=`cat $olddir/num_jobs` || exit 1; sdata=$data/split$nj; silphonelist=`cat $lang/phones/silence.csl` || exit 1 splice_opts=`cat $srcdir/splice_opts 2>/dev/null` gselect_opt="--gselect=ark,s,cs:gunzip -c $dir/gselect.JOB.gz|" gselect_opt_1stpass="$gselect_opt copy-gselect --n=$first_pass_gselect ark:- ark:- |" mkdir -p $dir/log [[ -d $sdata && $data/feats.scp -ot $sdata ]] || split_data.sh $data $nj || exit 1; echo $nj > $dir/num_jobs ## Set up features if [ -f $srcdir/final.mat ]; then feat_type=lda; else feat_type=delta; fi echo "$0: feature type is $feat_type" if [ -z "$transform_dir" ] && [ -f $olddir/trans.1 ]; then transform_dir=$olddir fi case $feat_type in delta) feats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | add-deltas ark:- ark:- |";; lda) feats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $srcdir/final.mat ark:- ark:- |" ;; *) echo "$0: invalid feature type $feat_type" && exit 1; esac if [ ! -z "$transform_dir" ]; then echo "$0: using transforms from $transform_dir" [ ! -f $transform_dir/trans.1 ] && echo "$0: no such file $transform_dir/trans.1" && exit 1; [ "$nj" -ne "`cat $transform_dir/num_jobs`" ] \ && echo "$0: #jobs mismatch with transform-dir." && exit 1; feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark,s,cs:$transform_dir/trans.JOB ark:- ark:- |" elif grep 'transform-feats --utt2spk' $srcdir/log/acc.0.1.log 2>/dev/null; then echo "$0: **WARNING**: you seem to be using an SGMM system trained with transforms," echo " but you are not providing the --transform-dir option in test time." fi ## Calculate FMLLR pre-transforms if needed. We are doing this here since this ## step is requried by models both with and without speaker vectors if $use_fmllr; then if [ ! -f $srcdir/final.fmllr_mdl ] || [ $srcdir/final.fmllr_mdl -ot $srcdir/final.mdl ]; then echo "$0: computing pre-transform for fMLLR computation." sgmm-comp-prexform $srcdir/final.mdl $srcdir/final.occs $srcdir/final.fmllr_mdl || exit 1; fi fi ## Save Gaussian-selection info to disk. # Note: we can use final.mdl regardless of whether there is an alignment model-- # they use the same UBM. if [ $stage -le 1 ]; then $cmd JOB=1:$nj $dir/log/gselect.JOB.log \ sgmm-gselect --full-gmm-nbest=$gselect $srcdir/final.mdl \ "$feats" "ark:|gzip -c >$dir/gselect.JOB.gz" || exit 1; fi ## Work out name of alignment model. ## if [ -z "$alignment_model" ]; then if [ -f "$srcdir/final.alimdl" ]; then alignment_model=$srcdir/final.alimdl; else alignment_model=$srcdir/final.mdl; fi fi [ ! -f "$alignment_model" ] && echo "$0: no alignment model $alignment_model " && exit 1; # Generate state-level lattice which we can rescore. This is done with the # alignment model and no speaker-vectors. if [ $stage -le 2 ]; then $cmd JOB=1:$nj $dir/log/decode_pass1.JOB.log \ lattice-to-fst "ark:gunzip -c $olddir/lat.JOB.gz|" ark:- \| \ fsttablecompose "fstproject --project_output=true $lang/G.fst | fstarcsort |" ark:- ark:- \| \ fstdeterminizestar ark:- ark:- \| \ compile-train-graphs-fsts --read-disambig-syms=$lang/phones/disambig.int \ --batch-size=$batch_size $scale_opts \ $srcdir/tree $srcdir/final.mdl $lang/L_disambig.fst ark:- ark:- \| \ sgmm-latgen-faster --max-active=$max_active --beam=$beam --lattice-beam=$lat_beam \ --acoustic-scale=$acwt --determinize-lattice=false --allow-partial=true \ --word-symbol-table=$lang/words.txt "$gselect_opt_1stpass" $alignment_model \ "ark:-" "$feats" "ark:|gzip -c > $dir/pre_lat.JOB.gz" || exit 1; fi ## Check if the model has speaker vectors spkdim=`sgmm-info $srcdir/final.mdl | grep 'speaker vector' | awk '{print $NF}'` if [ $spkdim -gt 0 ]; then ### For models with speaker vectors: # Estimate speaker vectors (1st pass). Prune before determinizing # because determinization can take a while on un-pruned lattices. # Note: the sgmm-post-to-gpost stage is necessary because we have # a separate alignment-model and final model, otherwise we'd skip it # and use sgmm-est-spkvecs. if [ $stage -le 3 ]; then $cmd JOB=1:$nj $dir/log/vecs_pass1.JOB.log \ gunzip -c $dir/pre_lat.JOB.gz \| \ lattice-prune --acoustic-scale=$acwt --beam=$vecs_beam ark:- ark:- \| \ lattice-determinize-pruned --acoustic-scale=$acwt --beam=$vecs_beam ark:- ark:- \| \ lattice-to-post --acoustic-scale=$acwt ark:- ark:- \| \ weight-silence-post 0.0 $silphonelist $alignment_model ark:- ark:- \| \ sgmm-post-to-gpost "$gselect_opt" $alignment_model "$feats" ark:- ark:- \| \ sgmm-est-spkvecs-gpost --spk2utt=ark:$sdata/JOB/spk2utt \ $srcdir/final.mdl "$feats" ark,s,cs:- "ark:$dir/pre_vecs.JOB" || exit 1; fi # Estimate speaker vectors (2nd pass). Since we already have spk vectors, # at this point we need to rescore the lattice to get the correct posteriors. if [ $stage -le 4 ]; then $cmd JOB=1:$nj $dir/log/vecs_pass2.JOB.log \ gunzip -c $dir/pre_lat.JOB.gz \| \ sgmm-rescore-lattice --spk-vecs=ark:$dir/pre_vecs.JOB --utt2spk=ark:$sdata/JOB/utt2spk \ "$gselect_opt" $srcdir/final.mdl ark:- "$feats" ark:- \| \ lattice-prune --acoustic-scale=$acwt --beam=$vecs_beam ark:- ark:- \| \ lattice-determinize-pruned --acoustic-scale=$acwt --beam=$vecs_beam ark:- ark:- \| \ lattice-to-post --acoustic-scale=$acwt ark:- ark:- \| \ weight-silence-post 0.0 $silphonelist $srcdir/final.mdl ark:- ark:- \| \ sgmm-est-spkvecs --spk2utt=ark:$sdata/JOB/spk2utt "$gselect_opt" --spk-vecs=ark:$dir/pre_vecs.JOB \ $srcdir/final.mdl "$feats" ark,s,cs:- "ark:$dir/vecs.JOB" || exit 1; fi rm $dir/pre_vecs.* if $use_fmllr; then # Estimate fMLLR transforms (note: these may be on top of any # fMLLR transforms estimated with the baseline GMM system. if [ $stage -le 5 ]; then # compute fMLLR transforms. echo "$0: computing fMLLR transforms." $cmd JOB=1:$nj $dir/log/fmllr.JOB.log \ gunzip -c $dir/pre_lat.JOB.gz \| \ sgmm-rescore-lattice --spk-vecs=ark:$dir/vecs.JOB --utt2spk=ark:$sdata/JOB/utt2spk \ "$gselect_opt" $srcdir/final.mdl ark:- "$feats" ark:- \| \ lattice-prune --acoustic-scale=$acwt --beam=$vecs_beam ark:- ark:- \| \ lattice-determinize-pruned --acoustic-scale=$acwt --beam=$vecs_beam ark:- ark:- \| \ lattice-to-post --acoustic-scale=$acwt ark:- ark:- \| \ weight-silence-post 0.0 $silphonelist $srcdir/final.mdl ark:- ark:- \| \ sgmm-est-fmllr --spk2utt=ark:$sdata/JOB/spk2utt "$gselect_opt" --spk-vecs=ark:$dir/vecs.JOB \ --fmllr-iters=$fmllr_iters --fmllr-min-count=$fmllr_min_count \ $srcdir/final.fmllr_mdl "$feats" ark,s,cs:- "ark:$dir/trans.JOB" || exit 1; fi feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark,s,cs:$dir/trans.JOB ark:- ark:- |" fi # Now rescore the state-level lattices with the adapted features and the # corresponding model. Prune and determinize the lattices to limit # their size. if [ $stage -le 6 ]; then $cmd JOB=1:$nj $dir/log/rescore.JOB.log \ sgmm-rescore-lattice "$gselect_opt" --utt2spk=ark:$sdata/JOB/utt2spk --spk-vecs=ark:$dir/vecs.JOB \ $srcdir/final.mdl "ark:gunzip -c $dir/pre_lat.JOB.gz|" "$feats" ark:- \| \ lattice-determinize-pruned --acoustic-scale=$acwt --beam=$lat_beam ark:- \ "ark:|gzip -c > $dir/lat.JOB.gz" || exit 1; fi rm $dir/pre_lat.*.gz else ### For models without speaker vectors: if $use_fmllr; then # Estimate fMLLR transforms (note: these may be on top of any # fMLLR transforms estimated with the baseline GMM system. if [ $stage -le 5 ]; then # compute fMLLR transforms. echo "$0: computing fMLLR transforms." $cmd JOB=1:$nj $dir/log/fmllr.JOB.log \ gunzip -c $dir/pre_lat.JOB.gz \| \ sgmm-rescore-lattice --utt2spk=ark:$sdata/JOB/utt2spk \ "$gselect_opt" $srcdir/final.mdl ark:- "$feats" ark:- \| \ lattice-prune --acoustic-scale=$acwt --beam=$vecs_beam ark:- ark:- \| \ lattice-determinize-pruned --acoustic-scale=$acwt --beam=$vecs_beam ark:- ark:- \| \ lattice-to-post --acoustic-scale=$acwt ark:- ark:- \| \ weight-silence-post 0.0 $silphonelist $srcdir/final.mdl ark:- ark:- \| \ sgmm-est-fmllr --spk2utt=ark:$sdata/JOB/spk2utt "$gselect_opt" \ --fmllr-iters=$fmllr_iters --fmllr-min-count=$fmllr_min_count \ $srcdir/final.fmllr_mdl "$feats" ark,s,cs:- "ark:$dir/trans.JOB" || exit 1; fi feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark,s,cs:$dir/trans.JOB ark:- ark:- |" fi # Now rescore the state-level lattices with the adapted features and the # corresponding model. Prune and determinize the lattices to limit # their size. if [ $stage -le 6 ] && $use_fmllr; then $cmd JOB=1:$nj $dir/log/rescore.JOB.log \ sgmm-rescore-lattice "$gselect_opt" --utt2spk=ark:$sdata/JOB/utt2spk \ $srcdir/final.mdl "ark:gunzip -c $dir/pre_lat.JOB.gz|" "$feats" ark:- \| \ lattice-determinize-pruned --acoustic-scale=$acwt --beam=$lat_beam ark:- \ "ark:|gzip -c > $dir/lat.JOB.gz" || exit 1; rm $dir/pre_lat.*.gz else # Already done with decoding if no adaptation needed. for n in `seq 1 $nj`; do mv $dir/pre_lat.${n}.gz $dir/lat.${n}.gz done fi fi # The output of this script is the files "lat.*.gz"-- we'll rescore this at # different acoustic scales to get the final output. if [ $stage -le 7 ]; then [ ! -x local/score.sh ] && \ echo "Not scoring because local/score.sh does not exist or not executable." && exit 1; echo "score best paths" local/score.sh --cmd "$cmd" $data $lang $dir echo "score confidence and timing with sclite" #local/score_sclite_conf.sh --cmd "$cmd" --language turkish $data $lang $dir fi echo "Decoding done." exit 0; |