Blame view
Scripts/steps/.svn/text-base/get_fmllr_basis.sh.svn-base
3.72 KB
ec85f8892 first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
#!/bin/bash # Copyright 2012 Carnegie Mellon University (Author: Yajie Miao) # Johns Hopkins University (Author: Daniel Povey) # Decoding script that computes basis for basis-fMLLR (see decode_fmllr_basis.sh). # This can be on top of delta+delta-delta, or LDA+MLLT features. stage=0 # Parameters in alignment of training data scale_opts="--transition-scale=1.0 --acoustic-scale=0.1 --self-loop-scale=0.1" per_utt=true # If true, then treat each utterance as a separate speaker for purposes of # basis training... this is recommended if the number of actual speakers in your # training set is less than (feature-dim) * (feature-dim+1). align_beam=10 retry_beam=40 silence_weight=0.01 cmd=run.pl # End configuration section echo "$0 $@" # Print the command line for logging [ -f ./path.sh ] && . ./path.sh; # source the path. . parse_options.sh || exit 1; if [ $# != 3 ]; then echo "Usage: steps/get_fmllr_basis.sh [options] <data-dir> <lang-dir> <exp-dir>" echo " e.g.: steps/decode_basis_fmllr.sh data/train_si84 data/lang exp/tri3b/" echo "Note: we currently assume that this is the same data you trained the model with." echo "main options (for others, see top of script file)" echo " --config <config-file> # config containing options" echo " --cmd <cmd> # Command to run in parallel with" exit 1; fi data=$1 lang=$2 dir=$3 nj=`cat $dir/num_jobs` || exit 1; sdata=$data/split$nj; [[ -d $sdata && $data/feats.scp -ot $sdata ]] || split_data.sh $data $nj || exit 1; splice_opts=`cat $dir/splice_opts 2>/dev/null` # frame-splicing options. silphonelist=`cat $lang/phones/silence.csl` || exit 1; for f in $data/feats.scp $dir/final.alimdl $dir/final.mdl $dir/ali.1.gz; do [ ! -f $f ] && echo "$0: no such file $f" && exit 1; done # Set up the unadapted features "$sifeats". if [ -f $dir/final.mat ]; then feat_type=lda; else feat_type=delta; fi echo "$0: feature type is $feat_type"; case $feat_type in delta) sifeats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | add-deltas ark:- ark:- |";; lda) sifeats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $dir/final.mat ark:- ark:- |";; *) echo "Invalid feature type $feat_type" && exit 1; esac # Set up the adapted features "$feats" for training set. if [ -f $srcdir/trans.1 ]; then feats="$sifeats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark:$sdata/trans.JOB ark:- ark:- |"; else feats="$sifeats"; fi if $per_utt; then spk2utt_opt= # treat each utterance as separate speaker when computing basis. echo "Doing per-utterance adaptation for purposes of computing the basis." else echo "Doing per-speaker adaptation for purposes of computing the basis." [ `cat $sdata/spk2utt | wc -l` -lt $[41*40] ] && \ echo "Warning: number of speakers is small, might be better to use --per-utt=true." spk2utt_opt="--spk2utt=ark:$sdata/JOB/spk2utt" fi # Note: we get Gaussian level alignments with the "final.mdl" and the # speaker adapted features. $cmd JOB=1:$nj $dir/log/basis_acc.JOB.log \ ali-to-post "ark:gunzip -c $dir/ali.JOB.gz|" ark:- \| \ weight-silence-post $silence_weight $silphonelist $dir/final.mdl ark:- ark:- \| \ gmm-post-to-gpost $dir/final.mdl "$feats" ark:- ark:- \| \ gmm-basis-fmllr-accs-gpost $spk2utt_opt \ $dir/final.mdl "$sifeats" ark,s,cs:- $dir/basis.acc.JOB || exit 1; # Compute the basis matrices. $cmd $dir/log/basis_training.log \ gmm-basis-fmllr-training $dir/final.mdl $dir/fmllr.basis $dir/basis.acc.* || exit 1; rm $dir/basis.acc.* 2>/dev/null exit 0; |