Blame view
Scripts/steps/.svn/text-base/train_mmi_sgmm.sh.svn-base
6.46 KB
ec85f8892 first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
#!/bin/bash # Copyright 2012 Johns Hopkins University (Author: Daniel Povey). Apache 2.0. # MMI training (or optionally boosted MMI, if you give the --boost option), # for SGMMs. 4 iterations (by default) of Extended Baum-Welch update. # # Begin configuration section. cmd=run.pl num_iters=4 boost=0.0 cancel=true # if true, cancel num and den counts on each frame. acwt=0.1 stage=0 update_opts= transform_dir= # End configuration section echo "$0 $@" # Print the command line for logging [ -f ./path.sh ] && . ./path.sh; # source the path. . parse_options.sh || exit 1; if [ $# -ne 5 ]; then echo "Usage: steps/train_mmi_sgmm.sh <data> <lang> <ali> <denlats> <exp>" echo " e.g.: steps/train_mmi_sgmm.sh data/train_si84 data/lang exp/tri2b_ali_si84 exp/tri2b_denlats_si84 exp/tri2b_mmi" echo "Main options (for others, see top of script file)" echo " --boost <boost-weight> # (e.g. 0.1), for boosted MMI. (default 0)" echo " --cancel (true|false) # cancel stats (true by default)" echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs." echo " --config <config-file> # config containing options" echo " --stage <stage> # stage to do partial re-run from." echo " --transform-dir <transform-dir> # directory to find fMLLR transforms." exit 1; fi data=$1 lang=$2 alidir=$3 denlatdir=$4 dir=$5 mkdir -p $dir/log for f in $data/feats.scp $alidir/{tree,final.mdl,ali.1.gz} $denlatdir/lat.1.gz; do [ ! -f $f ] && echo "$0: no such file $f" && exit 1; done nj=`cat $alidir/num_jobs` || exit 1; [ "$nj" -ne "`cat $denlatdir/num_jobs`" ] && \ echo "$alidir and $denlatdir have different num-jobs" && exit 1; sdata=$data/split$nj splice_opts=`cat $alidir/splice_opts 2>/dev/null` mkdir -p $dir/log [[ -d $sdata && $data/feats.scp -ot $sdata ]] || split_data.sh $data $nj || exit 1; cp $alidir/splice_opts $dir 2>/dev/null echo $nj > $dir/num_jobs cp $alidir/tree $dir cp $alidir/final.mdl $dir/0.mdl silphonelist=`cat $lang/phones/silence.csl` || exit 1; # Set up features if [ -f $alidir/final.mat ]; then feat_type=lda; else feat_type=delta; fi echo "$0: feature type is $feat_type" case $feat_type in delta) feats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | add-deltas ark:- ark:- |";; lda) feats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $alidir/final.mat ark:- ark:- |" cp $alidir/final.mat $dir ;; *) echo "Invalid feature type $feat_type" && exit 1; esac if [ ! -z "$transform_dir" ]; then echo "$0: using transforms from $transform_dir" [ ! -f $transform_dir/trans.1 ] && echo "$0: no such file $transform_dir/trans.1" \ && exit 1; feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark,s,cs:$transform_dir/trans.JOB ark:- ark:- |" else echo "$0: no fMLLR transforms." fi if [ -f $alidir/vecs.1 ]; then echo "$0: using speaker vectors from $alidir" spkvecs_opt="--spk-vecs=ark:$alidir/vecs.JOB --utt2spk=ark:$sdata/JOB/utt2spk" else echo "$0: no speaker vectors." spkvecs_opt= fi if [ -f $alidir/gselect.1.gz ]; then echo "$0: using Gaussian-selection info from $alidir" gselect_opt="--gselect=ark,s,cs:gunzip -c $alidir/gselect.JOB.gz|" else echo "$0: error: no Gaussian-selection info found" && exit 1; fi lats="ark:gunzip -c $denlatdir/lat.JOB.gz|" if [[ "$boost" != "0.0" && "$boost" != 0 ]]; then lats="$lats lattice-boost-ali --b=$boost --silence-phones=$silphonelist $alidir/final.mdl ark:- 'ark,s,cs:gunzip -c $alidir/ali.JOB.gz|' ark:- |" fi x=0 while [ $x -lt $num_iters ]; do echo "Iteration $x of MMI training" # Note: the num and den states are accumulated at the same time, so we # can cancel them per frame. if [ $stage -le $x ]; then $cmd JOB=1:$nj $dir/log/acc.$x.JOB.log \ sgmm-rescore-lattice "$gselect_opt" $spkvecs_opt $dir/$x.mdl "$lats" "$feats" ark:- \| \ lattice-to-post --acoustic-scale=$acwt ark:- ark:- \| \ sum-post --merge=$cancel --scale1=-1 \ ark:- "ark,s,cs:gunzip -c $alidir/ali.JOB.gz | ali-to-post ark:- ark:- |" ark:- \| \ sgmm-acc-stats2 "$gselect_opt" $spkvecs_opt $dir/$x.mdl "$feats" ark,s,cs:- \ $dir/num_acc.$x.JOB.acc $dir/den_acc.$x.JOB.acc || exit 1; n=`echo $dir/{num,den}_acc.$x.*.acc | wc -w`; [ "$n" -ne $[$nj*2] ] && \ echo "Wrong number of MMI accumulators $n versus 2*$nj" && exit 1; $cmd $dir/log/den_acc_sum.$x.log \ sgmm-sum-accs $dir/den_acc.$x.acc $dir/den_acc.$x.*.acc || exit 1; rm $dir/den_acc.$x.*.acc $cmd $dir/log/num_acc_sum.$x.log \ sgmm-sum-accs $dir/num_acc.$x.acc $dir/num_acc.$x.*.acc || exit 1; rm $dir/num_acc.$x.*.acc $cmd $dir/log/update.$x.log \ sgmm-est-ebw $update_opts $dir/$x.mdl $dir/num_acc.$x.acc $dir/den_acc.$x.acc $dir/$[$x+1].mdl || exit 1; fi # Some diagnostics: the objective function progress and auxiliary-function # improvement. Note: this code is same as in train_mmi.sh tail -n 50 $dir/log/acc.$x.*.log | perl -e '$acwt=shift @ARGV; while(<STDIN>) { if(m/gmm-acc-stats2.+Overall weighted acoustic likelihood per frame was (\S+) over (\S+) frames/) { $tot_aclike += $1*$2; $tot_frames1 += $2; } if(m|lattice-to-post.+Overall average log-like/frame is (\S+) over (\S+) frames. Average acoustic like/frame is (\S+)|) { $tot_den_lat_like += $1*$2; $tot_frames2 += $2; $tot_den_aclike += $3*$2; } } if (abs($tot_frames1 - $tot_frames2) > 0.01*($tot_frames1 + $tot_frames2)) { print STDERR "Frame-counts disagree $tot_frames1 versus $tot_frames2 "; } $tot_den_lat_like /= $tot_frames2; $tot_den_aclike /= $tot_frames2; $tot_aclike *= ($acwt / $tot_frames1); $num_like = $tot_aclike + $tot_den_aclike; $per_frame_objf = $num_like - $tot_den_lat_like; print "$per_frame_objf $tot_frames1 "; ' $acwt > $dir/tmpf objf=`cat $dir/tmpf | awk '{print $1}'`; nf=`cat $dir/tmpf | awk '{print $2}'`; rm $dir/tmpf impr=`grep -w Overall $dir/log/update.$x.log | awk '{x += $10*$12;} END{print x;}'` impr=`perl -e "print ($impr*$acwt/$nf);"` # We multiply by acwt, and divide by $nf which is the "real" number of frames. echo "Iteration $x: objf was $objf, MMI auxf change was $impr" | tee $dir/objf.$x.log x=$[$x+1] done echo "MMI training finished" rm $dir/final.mdl 2>/dev/null ln -s $x.mdl $dir/final.mdl exit 0; |