Blame view
Scripts/steps/.svn/text-base/train_quick.sh.svn-base
7.5 KB
ec85f8892 first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
#!/bin/bash # Copyright 2012 Johns Hopkins University (Author: Daniel Povey). Apache 2.0. # Train a model on top of existing features (no feature-space learning of any # kind is done). This script initializes the model from each stage of the # previous system's model, judging the similarities based on overlap of counts # in the tree stats. # Begin configuration.. cmd=run.pl scale_opts="--transition-scale=1.0 --acoustic-scale=0.1 --self-loop-scale=0.1" realign_iters="10 15"; # Only realign twice. num_iters=20 # Number of iterations of training maxiterinc=15 # Last iter to increase #Gauss on. batch_size=750 # batch size to use while compiling graphs... memory/speed tradeoff. beam=10 # alignment beam. retry_beam=40 stage=-5 cluster_thresh=-1 # for build-tree control final bottom-up clustering of leaves # End configuration section. echo "$0 $@" # Print the command line for logging [ -f path.sh ] && . ./path.sh . parse_options.sh || exit 1; if [ $# != 6 ]; then echo "Usage: steps/train_quick.sh <num-leaves> <num-gauss> <data> <lang> <ali-dir> <exp-dir>" echo " e.g.: steps/train_quick.sh 2500 15000 data/train_si284 data/lang exp/tri3c_ali_si284 exp/tri4b" echo "Main options (for others, see top of script file)" echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs." echo " --config <config-file> # config containing options" echo " --stage <stage> # stage to do partial re-run from." exit 1; fi numleaves=$1 totgauss=$2 data=$3 lang=$4 alidir=$5 dir=$6 for f in $data/feats.scp $lang/L.fst $alidir/ali.1.gz $alidir/final.mdl; do [ ! -f $f ] && echo "$0: no such file $f" && exit 1; done # Set various variables. oov=`cat $lang/oov.int` silphonelist=`cat $lang/phones/silence.csl` ciphonelist=`cat $lang/phones/context_indep.csl` numgauss=$[totgauss/2] # Start with half the total number of Gaussians. We won't have # to mix up much probably, as we're initializing with the old (already mixed-up) pdf's. [ $numgauss -lt $numleaves ] && numgauss=$numleaves incgauss=$[($totgauss-$numgauss)/$maxiterinc] # per-iter increment for #Gauss nj=`cat $alidir/num_jobs` || exit 1; sdata=$data/split$nj splice_opts=`cat $alidir/splice_opts 2>/dev/null` # frame-splicing options. mkdir -p $dir/log echo $nj >$dir/num_jobs cp $alidir/splice_opts $dir 2>/dev/null [[ -d $sdata && $data/feats.scp -ot $sdata ]] || split_data.sh $data $nj || exit 1; ## Set up features. if [ -f $alidir/final.mat ]; then feat_type=lda; else feat_type=delta; fi echo "$0: feature type is $feat_type" case $feat_type in delta) sifeats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | add-deltas ark:- ark:- |";; lda) sifeats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $alidir/final.mat ark:- ark:- |" cp $alidir/final.mat $dir ;; *) echo "Invalid feature type $feat_type" && exit 1; esac if [ -f $alidir/trans.1 ]; then echo "$0: using transforms from $alidir" ln.pl $alidir/trans.* $dir # Link them to dest dir. feats="$sifeats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark,s,cs:$dir/trans.JOB ark:- ark:- |" fi ## if [ $stage -le -5 ]; then echo "$0: accumulating tree stats" $cmd JOB=1:$nj $dir/log/acc_tree.JOB.log \ acc-tree-stats --ci-phones=$ciphonelist $alidir/final.mdl "$feats" \ "ark:gunzip -c $alidir/ali.JOB.gz|" $dir/JOB.treeacc || exit 1; [ "`ls $dir/*.treeacc | wc -w`" -ne "$nj" ] && echo "$0: Wrong #tree-stats" && exit 1; sum-tree-stats $dir/treeacc $dir/*.treeacc 2>$dir/log/sum_tree_acc.log || exit 1; rm $dir/*.treeacc fi if [ $stage -le -4 ]; then echo "$0: Getting questions for tree clustering." # preparing questions, roots file... cluster-phones $dir/treeacc $lang/phones/sets.int $dir/questions.int 2> $dir/log/questions.log || exit 1; cat $lang/phones/extra_questions.int >> $dir/questions.int compile-questions $lang/topo $dir/questions.int $dir/questions.qst 2>$dir/log/compile_questions.log || exit 1; echo "$0: Building the tree" $cmd $dir/log/build_tree.log \ build-tree --verbose=1 --max-leaves=$numleaves \ --cluster-thresh=$cluster_thresh $dir/treeacc $lang/phones/roots.int \ $dir/questions.qst $lang/topo $dir/tree || exit 1; fi if [ $stage -le -3 ]; then echo "$0: Initializing the model" # The gmm-init-model command (with more than the normal # of command-line args) # will initialize the p.d.f.'s to the p.d.f.'s in the alignment model. gmm-init-model --write-occs=$dir/1.occs \ $dir/tree $dir/treeacc $lang/topo $dir/tmp.mdl $alidir/tree $alidir/final.mdl \ 2>$dir/log/init_model.log || exit 1; grep 'no stats' $dir/log/init_model.log && echo "$0: This is a bad warning."; rm $dir/treeacc fi if [ $stage -le -2 ]; then echo "$0: mixing up old model." # We do both mixing-down and mixing-up to get the target #Gauss in each state, # since the initial model may have either more or fewer Gaussians than we want. gmm-mixup --mix-down=$numgauss --mix-up=$numgauss $dir/tmp.mdl $dir/1.occs $dir/1.mdl \ 2> $dir/log/mixup.log || exit 1; rm $dir/tmp.mdl fi # Convert alignments to the new tree. if [ $stage -le -1 ]; then echo "$0: converting old alignments" $cmd JOB=1:$nj $dir/log/convert.JOB.log \ convert-ali $alidir/final.mdl $dir/1.mdl $dir/tree \ "ark:gunzip -c $alidir/ali.JOB.gz|" "ark:|gzip -c >$dir/ali.JOB.gz" || exit 1; fi if [ $stage -le 0 ]; then echo "$0: compiling training graphs" $cmd JOB=1:$nj $dir/log/compile_graphs.JOB.log \ compile-train-graphs --batch-size=$batch_size $dir/tree $dir/1.mdl $lang/L.fst \ "ark:sym2int.pl --map-oov $oov -f 2- $lang/words.txt < $sdata/JOB/text |" \ "ark:|gzip -c >$dir/fsts.JOB.gz" || exit 1; fi x=1 while [ $x -lt $num_iters ]; do echo "$0: pass $x" if echo $realign_iters | grep -w $x >/dev/null && [ $stage -le $x ]; then echo "$0: aligning data" $cmd JOB=1:$nj $dir/log/align.$x.JOB.log \ gmm-align-compiled $scale_opts --beam=$beam --retry-beam=$retry_beam $dir/$x.mdl \ "ark:gunzip -c $dir/fsts.JOB.gz|" "$feats" "ark:|gzip -c >$dir/ali.JOB.gz" \ || exit 1; fi if [ $stage -le $x ]; then $cmd JOB=1:$nj $dir/log/acc.$x.JOB.log \ gmm-acc-stats-ali $dir/$x.mdl "$feats" \ "ark,s,cs:gunzip -c $dir/ali.JOB.gz|" $dir/$x.JOB.acc || exit 1; [ "`ls $dir/$x.*.acc | wc -w`" -ne "$nj" ] && echo "$0: wrong #accs" && exit 1; $cmd $dir/log/update.$x.log \ gmm-est --write-occs=$dir/$[$x+1].occs --mix-up=$numgauss $dir/$x.mdl \ "gmm-sum-accs - $dir/$x.*.acc |" $dir/$[$x+1].mdl || exit 1; rm $dir/$x.mdl $dir/$x.*.acc $dir/$x.occs fi [[ $x -le $maxiterinc ]] && numgauss=$[$numgauss+$incgauss]; x=$[$x+1]; done if [ -f $alidir/trans.1 ]; then echo "$0: estimating alignment model" $cmd JOB=1:$nj $dir/log/acc_alimdl.JOB.log \ ali-to-post "ark:gunzip -c $dir/ali.JOB.gz|" ark:- \| \ gmm-acc-stats-twofeats $dir/$x.mdl "$feats" "$sifeats" \ ark,s,cs:- $dir/$x.JOB.acc || exit 1; [ "`ls $dir/$x.*.acc | wc -w`" -ne "$nj" ] && echo "$0: wrong #accs" && exit 1; $cmd $dir/log/est_alimdl.log \ gmm-est --write-occs=$dir/final.occs --remove-low-count-gaussians=false $dir/$x.mdl \ "gmm-sum-accs - $dir/$x.*.acc|" $dir/$x.alimdl || exit 1; rm $dir/$x.*.acc rm $dir/final.alimdl 2>/dev/null ln -s $x.alimdl $dir/final.alimdl fi rm $dir/final.mdl 2>/dev/null ln -s $x.mdl $dir/final.mdl echo Done |