Blame view
Scripts/steps/.svn/text-base/train_ubm.sh.svn-base
4.92 KB
ec85f8892 first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
#!/bin/bash # Copyright 2012 Johns Hopkins University (Author: Daniel Povey). Apache 2.0. # This trains a UBM (i.e. a mixture of Gaussians), by clustering # the Gaussians from a trained HMM/GMM system and then doing a few # iterations of UBM training. # We mostly use this for SGMM systems. # Begin configuration section. nj=4 cmd=run.pl silence_weight= # You can set it to e.g. 0.0, to weight down silence in training. stage=-2 num_gselect1=50 # first stage of Gaussian-selection num_gselect2=25 # second stage. intermediate_num_gauss=2000 num_iters=3 no_fmllr=false # End configuration section. echo "$0 $@" # Print the command line for logging if [ -f path.sh ]; then . ./path.sh; fi . parse_options.sh || exit 1; if [ $# != 5 ]; then echo "Usage: steps/train_ubm.sh <num-gauss> <data> <lang> <ali-dir> <exp>" echo " e.g.: steps/train_ubm.sh 400 data/train_si84 data/lang exp/tri2b_ali_si84 exp/ubm3c" echo "main options (for others, see top of script file)" echo " --config <config-file> # config containing options" echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs." echo " --silence-weight <sil-weight> # weight for silence (e.g. 0.5 or 0.0)" echo " --num-iters <#iters> # Number of iterations of E-M"\ echo " --no-fmllr (true|false) # ignore speaker matrices even if present" exit 1; fi num_gauss=$1 data=$2 lang=$3 alidir=$4 dir=$5 for f in $data/feats.scp $lang/L.fst $alidir/ali.1.gz $alidir/final.mdl; do [ ! -f $f ] && echo "No such file $f" && exit 1; done if [ $[$num_gauss*2] -gt $intermediate_num_gauss ]; then echo "intermediate_num_gauss was too small $intermediate_num_gauss" intermediate_num_gauss=$[$num_gauss*2]; echo "setting it to $intermediate_num_gauss" fi # Set various variables. silphonelist=`cat $lang/phones/silence.csl` || exit 1; nj=`cat $alidir/num_jobs` || exit 1; mkdir -p $dir/log echo $nj > $dir/num_jobs sdata=$data/split$nj; [[ -d $sdata && $data/feats.scp -ot $sdata ]] || split_data.sh $data $nj || exit 1; splice_opts=`cat $alidir/splice_opts 2>/dev/null` # frame-splicing options. ## Set up features. if [ -f $alidir/final.mat ]; then feat_type=lda; else feat_type=delta; fi echo "$0: feature type is $feat_type" case $feat_type in delta) feats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | add-deltas ark:- ark:- |";; lda) feats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $alidir/final.mat ark:- ark:- |" cp $alidir/final.mat $dir ;; *) echo "$0: invalid feature type $feat_type" && exit 1; esac if [ -f $alidir/trans.1 ]; then if $no_fmllr; then echo "$0: deliberately ignoring speaker transforms from $alidir" else echo "$0: using transforms from $alidir" feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark,s,cs:$alidir/trans.JOB ark:- ark:- |" fi fi ## if [ ! -z "$silence_weight" ]; then weights_opt="--weights='ark,s,cs:gunzip -c $alidir/ali.JOB.gz | ali-to-post ark:- ark:- | weight-silence-post $silence_weight $silphonelist $alidir/final.mdl ark:- ark:- | post-to-weights ark:- ark:- |'" else weights_opt= fi if [ $stage -le -2 ]; then echo "$0: clustering model $alidir/final.mdl to get initial UBM" $cmd $dir/log/cluster.log \ init-ubm --intermediate-num-gauss=$intermediate_num_gauss --ubm-num-gauss=$num_gauss \ --verbose=2 --fullcov-ubm=true $alidir/final.mdl $alidir/final.occs \ $dir/0.ubm || exit 1; fi # Do initial phase of Gaussian selection and save it to disk -- later on we'll # do more Gaussian selection to further prune, as the model changes. if [ $stage -le -1 ]; then echo "$0: doing Gaussian selection" $cmd JOB=1:$nj $dir/log/gselect.JOB.log \ gmm-gselect --n=$num_gselect1 "fgmm-global-to-gmm $dir/0.ubm - |" "$feats" \ "ark:|gzip -c >$dir/gselect.JOB.gz" || exit 1; fi x=0 while [ $x -lt $num_iters ]; do echo "Pass $x" $cmd JOB=1:$nj $dir/log/acc.$x.JOB.log \ gmm-gselect --n=$num_gselect2 "--gselect=ark,s,cs:gunzip -c $dir/gselect.JOB.gz|" \ "fgmm-global-to-gmm $dir/$x.ubm - |" "$feats" ark:- \| \ fgmm-global-acc-stats $weights_opt --gselect=ark,s,cs:- $dir/$x.ubm "$feats" \ $dir/$x.JOB.acc || exit 1; lowcount_opt="--remove-low-count-gaussians=false" [ $[$x+1] -eq $num_iters ] && lowcount_opt= # Only remove low-count Gaussians # on last iter-- we can't do it earlier, or the Gaussian-selection info would # be mismatched. $cmd $dir/log/update.$x.log \ fgmm-global-est $lowcount_opt --verbose=2 $dir/$x.ubm "fgmm-global-sum-accs - $dir/$x.*.acc |" \ $dir/$[$x+1].ubm || exit 1; rm $dir/$x.*.acc $dir/$x.ubm x=$[$x+1] done rm $dir/gselect.*.gz rm $dir/final.ubm 2>/dev/null mv $dir/$x.ubm $dir/final.ubm || exit 1; |