Blame view
Scripts/steps/decode_sgmm2.sh
10.1 KB
ec85f8892 first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
#!/bin/bash # Copyright 2012 Johns Hopkins University (Author: Daniel Povey). Apache 2.0. # This script does decoding with an SGMM system, with speaker vectors. # If the SGMM system was # built on top of fMLLR transforms from a conventional system, you should # provide the --transform-dir option. # Begin configuration section. stage=1 transform_dir= # dir to find fMLLR transforms. nj=4 # number of decoding jobs. acwt=0.1 # Just a default value, used for adaptation and beam-pruning.. cmd=run.pl beam=13.0 gselect=15 # Number of Gaussian-selection indices for SGMMs. [Note: # the first_pass_gselect variable is used for the 1st pass of # decoding and can be tighter. first_pass_gselect=3 # Use a smaller number of Gaussian-selection indices in # the 1st pass of decoding (lattice generation). max_active=7000 max_arcs=-1 #WARNING: This option is renamed lat_beam (it was renamed to follow the naming # in the other scripts lattice_beam=6.0 # Beam we use in lattice generation. vecs_beam=4.0 # Beam we use to prune lattices while getting posteriors for # speaker-vector computation. Can be quite tight (actually we could # probably just do best-path. use_fmllr=false fmllr_iters=10 fmllr_min_count=1000 num_threads=1 # if >1, will use gmm-latgen-faster-parallel parallel_opts= # If you supply num-threads, you should supply this too. skip_scoring=false scoring_opts= # note: there are no more min-lmwt and max-lmwt options, instead use # e.g. --scoring-opts "--min-lmwt 1 --max-lmwt 20" # End configuration section. echo "$0 $@" # Print the command line for logging [ -f ./path.sh ] && . ./path.sh; # source the path. . parse_options.sh || exit 1; if [ $# -ne 3 ]; then echo "Usage: steps/decode_sgmm2.sh [options] <graph-dir> <data-dir> <decode-dir>" echo " e.g.: steps/decode_sgmm2.sh --transform-dir exp/tri3b/decode_dev93_tgpr \\" echo " exp/sgmm3a/graph_tgpr data/test_dev93 exp/sgmm3a/decode_dev93_tgpr" echo "main options (for others, see top of script file)" echo " --transform-dir <decoding-dir> # directory of previous decoding" echo " # where we can find transforms for SAT systems." echo " --config <config-file> # config containing options" echo " --nj <nj> # number of parallel jobs" echo " --cmd <cmd> # Command to run in parallel with" echo " --beam <beam> # Decoding beam; default 13.0" exit 1; fi graphdir=$1 data=$2 dir=$3 srcdir=`dirname $dir`; # Assume model directory one level up from decoding directory. for f in $graphdir/HCLG.fst $data/feats.scp $srcdir/final.mdl; do [ ! -f $f ] && echo "$0: no such file $f" && exit 1; done sdata=$data/split$nj; silphonelist=`cat $graphdir/phones/silence.csl` || exit 1 gselect_opt="--gselect=ark,s,cs:gunzip -c $dir/gselect.JOB.gz|" gselect_opt_1stpass="$gselect_opt copy-gselect --n=$first_pass_gselect ark:- ark:- |" mkdir -p $dir/log [[ -d $sdata && $data/feats.scp -ot $sdata ]] || split_data.sh $data $nj || exit 1; echo $nj > $dir/num_jobs splice_opts=`cat $srcdir/splice_opts 2>/dev/null` # frame-splicing options. thread_string= [ $num_threads -gt 1 ] && thread_string="-parallel --num-threads=$num_threads" ## Set up features. if [ -f $srcdir/final.mat ]; then feat_type=lda; else feat_type=delta; fi echo "$0: feature type is $feat_type" case $feat_type in delta) feats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | add-deltas ark:- ark:- |";; lda) feats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $srcdir/final.mat ark:- ark:- |" ;; *) echo "$0: invalid feature type $feat_type" && exit 1; esac if [ ! -z "$transform_dir" ]; then [ "$nj" -ne "`cat $transform_dir/num_jobs`" ] \ && echo "$0: #jobs mismatch with transform-dir." && exit 1; if [ -f $transform_dir/trans.1 ]; then echo "$0: using transforms from $transform_dir" feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark,s,cs:$transform_dir/trans.JOB ark:- ark:- |" elif [ -f $transform_dir/raw_trans.1 ]; then feats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark,s,cs:$transform_dir/raw_trans.JOB ark:- ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $srcdir/final.mat ark:- ark:- |" else echo "$0: no such file $transform_dir/trans.1 or $transform_dir/raw_trans.1, invalid --transform-dir option?" exit 1; fi elif grep 'transform-feats --utt2spk' $srcdir/log/acc.0.1.log 2>/dev/null; then echo "$0: **WARNING**: you seem to be using an SGMM system trained with transforms," echo " but you are not providing the --transform-dir option in test time." fi ## ## Save Gaussian-selection info to disk. # Note: we can use final.mdl regardless of whether there is an alignment model-- # they use the same UBM. if [ $stage -le 1 ]; then $cmd JOB=1:$nj $dir/log/gselect.JOB.log \ sgmm2-gselect --full-gmm-nbest=$gselect $srcdir/final.mdl \ "$feats" "ark:|gzip -c >$dir/gselect.JOB.gz" || exit 1; fi # Generate state-level lattice which we can rescore. This is done with the alignment # model and no speaker-vectors. if [ $stage -le 2 ]; then $cmd $parallel_opts JOB=1:$nj $dir/log/decode_pass1.JOB.log \ sgmm2-latgen-faster$thread_string --max-active=$max_active --beam=$beam --lattice-beam=$lattice_beam \ --max-arcs=$max_arcs --acoustic-scale=$acwt --determinize-lattice=false --allow-partial=true \ --word-symbol-table=$graphdir/words.txt "$gselect_opt_1stpass" $srcdir/final.alimdl \ $graphdir/HCLG.fst "$feats" "ark:|gzip -c > $dir/pre_lat.JOB.gz" || exit 1; fi # Estimate speaker vectors (1st pass). Prune before determinizing # because determinization can take a while on un-pruned lattices. # Note: the sgmm2-post-to-gpost stage is necessary because we have # a separate alignment-model and final model, otherwise we'd skip it # and use sgmm2-est-spkvecs. if [ $stage -le 3 ]; then $cmd JOB=1:$nj $dir/log/vecs_pass1.JOB.log \ gunzip -c $dir/pre_lat.JOB.gz \| \ lattice-prune --acoustic-scale=$acwt --beam=$vecs_beam ark:- ark:- \| \ lattice-determinize-pruned --acoustic-scale=$acwt --beam=$vecs_beam ark:- ark:- \| \ lattice-to-post --acoustic-scale=$acwt ark:- ark:- \| \ weight-silence-post 0.0 $silphonelist $srcdir/final.alimdl ark:- ark:- \| \ sgmm2-post-to-gpost "$gselect_opt" $srcdir/final.alimdl "$feats" ark:- ark:- \| \ sgmm2-est-spkvecs-gpost --spk2utt=ark:$sdata/JOB/spk2utt \ $srcdir/final.mdl "$feats" ark,s,cs:- "ark:$dir/pre_vecs.JOB" || exit 1; fi # Estimate speaker vectors (2nd pass). Since we already have spk vectors, # at this point we need to rescore the lattice to get the correct posteriors. if [ $stage -le 4 ]; then $cmd JOB=1:$nj $dir/log/vecs_pass2.JOB.log \ gunzip -c $dir/pre_lat.JOB.gz \| \ sgmm2-rescore-lattice --spk-vecs=ark:$dir/pre_vecs.JOB --utt2spk=ark:$sdata/JOB/utt2spk \ "$gselect_opt" $srcdir/final.mdl ark:- "$feats" ark:- \| \ lattice-prune --acoustic-scale=$acwt --beam=$vecs_beam ark:- ark:- \| \ lattice-determinize-pruned --acoustic-scale=$acwt --beam=$vecs_beam ark:- ark:- \| \ lattice-to-post --acoustic-scale=$acwt ark:- ark:- \| \ weight-silence-post 0.0 $silphonelist $srcdir/final.mdl ark:- ark:- \| \ sgmm2-est-spkvecs --spk2utt=ark:$sdata/JOB/spk2utt "$gselect_opt" --spk-vecs=ark:$dir/pre_vecs.JOB \ $srcdir/final.mdl "$feats" ark,s,cs:- "ark:$dir/vecs.JOB" || exit 1; fi rm $dir/pre_vecs.* if $use_fmllr; then # Estimate fMLLR transforms (note: these may be on top of any # fMLLR transforms estimated with the baseline GMM system. if [ $stage -le 5 ]; then # compute fMLLR transforms. echo "$0: computing fMLLR transforms." if [ ! -f $srcdir/final.fmllr_mdl ] || [ $srcdir/final.fmllr_mdl -ot $srcdir/final.mdl ]; then echo "$0: computing pre-transform for fMLLR computation." sgmm2-comp-prexform $srcdir/final.mdl $srcdir/final.occs $srcdir/final.fmllr_mdl || exit 1; fi $cmd JOB=1:$nj $dir/log/fmllr.JOB.log \ gunzip -c $dir/pre_lat.JOB.gz \| \ sgmm2-rescore-lattice --spk-vecs=ark:$dir/vecs.JOB --utt2spk=ark:$sdata/JOB/utt2spk \ "$gselect_opt" $srcdir/final.mdl ark:- "$feats" ark:- \| \ lattice-prune --acoustic-scale=$acwt --beam=$vecs_beam ark:- ark:- \| \ lattice-determinize-pruned --acoustic-scale=$acwt --beam=$vecs_beam ark:- ark:- \| \ lattice-to-post --acoustic-scale=$acwt ark:- ark:- \| \ weight-silence-post 0.0 $silphonelist $srcdir/final.mdl ark:- ark:- \| \ sgmm2-est-fmllr --spk2utt=ark:$sdata/JOB/spk2utt "$gselect_opt" --spk-vecs=ark:$dir/vecs.JOB \ --fmllr-iters=$fmllr_iters --fmllr-min-count=$fmllr_min_count \ $srcdir/final.fmllr_mdl "$feats" ark,s,cs:- "ark:$dir/trans.JOB" || exit 1; fi feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark,s,cs:$dir/trans.JOB ark:- ark:- |" fi # Now rescore the state-level lattices with the adapted features and the # corresponding model. Prune and determinize the lattices to limit # their size. if [ $stage -le 6 ]; then $cmd $parallel_opts JOB=1:$nj $dir/log/rescore.JOB.log \ sgmm2-rescore-lattice "$gselect_opt" --utt2spk=ark:$sdata/JOB/utt2spk --spk-vecs=ark:$dir/vecs.JOB \ $srcdir/final.mdl "ark:gunzip -c $dir/pre_lat.JOB.gz|" "$feats" ark:- \| \ lattice-determinize-pruned$thread_string --acoustic-scale=$acwt --beam=$lattice_beam ark:- \ "ark:|gzip -c > $dir/lat.JOB.gz" || exit 1; fi rm $dir/pre_lat.*.gz # The output of this script is the files "lat.*.gz"-- we'll rescore this at different # acoustic scales to get the final output. if [ $stage -le 7 ]; then if ! $skip_scoring ; then [ ! -x local/score.sh ] && \ echo "Not scoring because local/score.sh does not exist or not executable." && exit 1; local/score.sh $scoring_opts --cmd "$cmd" $data $graphdir $dir fi fi exit 0; |