Blame view
Scripts/steps/rnnlmrescore.sh
7.32 KB
ec85f8892 first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
#!/bin/bash # Begin configuration section. N=10 inv_acwt=12 cmd=run.pl use_phi=false # This is kind of an obscure option. If true, we'll remove the old # LM weights (times 1-RNN_scale) using a phi (failure) matcher, which is # appropriate if the old LM weights were added in this way, e.g. by # lmrescore.sh. Otherwise we'll use normal composition, which is appropriate # if the lattices came directly from decoding. This won't actually make much # difference (if any) to WER, it's more so we know we are doing the right thing. test=false # Activate a testing option. stage=1 # Stage of this script, for partial reruns. # End configuration section. echo "$0 $@" # Print the command line for logging [ -f ./path.sh ] && . ./path.sh . utils/parse_options.sh if [ $# != 6 ]; then echo "Do language model rescoring of lattices (partially remove old LM, add new LM)" echo "This version applies an RNNLM and mixes it with the LM scores" echo "previously in the lattices., controlled by the first parameter (rnnlm-weight)" echo "" echo "Usage: utils/rnnlmrescore.sh <rnn-weight> <old-lang-dir> <rnn-dir> <data-dir> <input-decode-dir> <output-decode-dir>" echo "Main options:" echo " --inv-acwt <inv-acwt> # default 12. e.g. --inv-acwt 17. Equivalent to LM scale to use." echo " # for N-best list generation... note, we'll score at different acwt's" echo " --cmd <run.pl|queue.pl [opts]> # how to run jobs." echo " --phi (true|false) # Should be set to true if the source lattices were created" echo " # by lmrescore.sh, false if they came from decoding." echo " --N <N> # Value of N in N-best rescoring (default: 10)" exit 1; fi rnnweight=$1 oldlang=$2 rnndir=$3 data=$4 indir=$5 dir=$6 acwt=`perl -e "print (1.0/$inv_acwt);"` # Note: we'll actually produce lattices # that will be scored at a range of acoustic weights. This acwt should be close # to the final one we'll pick, though, for best performance (it controls the # N-best list generation). for f in $oldlang/G.fst $rnndir/rnnlm $data/feats.scp $indir/lat.1.gz; do [ ! -f $f ] && echo "$0: expected file $f to exist." && exit 1; done nj=`cat $indir/num_jobs` || exit 1; oldlm=$oldlang/G.fst adir=$dir/archives mkdir -p $dir; phi=`grep -w '#0' $oldlang/words.txt | awk '{print $2}'` rm $dir/.error 2>/dev/null mkdir -p $dir/log # First convert lattice to N-best. Be careful because this # will be quite sensitive to the acoustic scale; this should be close # to the one we'll finally get the best WERs with. # Note: the lattice-rmali part here is just because we don't # need the alignments for what we're doing. if [ $stage -le 1 ]; then echo "$0: converting lattices to N-best." $cmd JOB=1:$nj $dir/log/lat2nbest.JOB.log \ lattice-to-nbest --acoustic-scale=$acwt --n=$N \ "ark:gunzip -c $indir/lat.JOB.gz|" ark:- \| \ lattice-rmali ark:- "ark:|gzip -c >$dir/nbest1.JOB.gz" || exit 1; fi # next remove part of the old LM probs. if $use_phi; then if [ $stage -le 2 ]; then echo "$0: removing old LM scores." # Use the phi-matcher style of composition.. this is appropriate # if the old LM scores were added e.g. by lmrescore.sh, using # phi-matcher composition. $cmd JOB=1:$nj $dir/log/remove_old.JOB.log \ lattice-compose --phi-label=$phi "ark:gunzip -c $dir/nbest1.JOB.gz|" $oldlm \ "ark:|gzip -c >$dir/nbest2.JOB.gz" || exit 1; fi else if [ $stage -le 2 ]; then echo "$0: removing old LM scores." # this approach chooses the best path through the old LM FST, while # subtracting the old scores. If the lattices came straight from decoding, # this is what we want. Note here: each FST in "nbest1.JOB.gz" is a linear FST, # it has no alternatives (the N-best format works by having multiple keys # for each utterance). When we do "lattice-1best" we are selecting the best # path through the LM, there are no alternatives to consider within the # original lattice. $cmd JOB=1:$nj $dir/log/remove_old.JOB.log \ lattice-scale --acoustic-scale=-1 --lm-scale=-1 "ark:gunzip -c $dir/nbest1.JOB.gz|" ark:- \| \ lattice-compose ark:- "fstproject --project_output=true $oldlm |" ark:- \| \ lattice-1best ark:- ark:- \| \ lattice-scale --acoustic-scale=-1 --lm-scale=-1 ark:- "ark:|gzip -c >$dir/nbest2.JOB.gz" \ || exit 1; fi fi if [ $stage -le 3 ]; then # Decompose the n-best lists into 4 archives. echo "$0: creating separate-archive form of N-best lists." $cmd JOB=1:$nj $dir/log/make_new_archives.JOB.log \ mkdir -p $adir.JOB '&&' \ nbest-to-linear "ark:gunzip -c $dir/nbest2.JOB.gz|" \ "ark,t:$adir.JOB/ali" "ark,t:$adir.JOB/words" \ "ark,t:$adir.JOB/lmwt.nolm" "ark,t:$adir.JOB/acwt" || exit 1; fi if [ $stage -le 4 ]; then echo "$0: doing the same with old LM scores." # Create an archive with the LM scores before we # removed the LM probs (will help us do interpolation). $cmd JOB=1:$nj $dir/log/make_old_archives.JOB.log \ nbest-to-linear "ark:gunzip -c $dir/nbest1.JOB.gz|" "ark:/dev/null" \ "ark:/dev/null" "ark,t:$adir.JOB/lmwt.withlm" "ark:/dev/null" || exit 1; fi if $test; then # This branch is a sanity check that at the acwt where we generated # the N-best list, we get the same WER. echo "$0 [testing branch]: generating lattices without changing scores." $cmd JOB=1:$nj $dir/log/test.JOB.log \ linear-to-nbest "ark:$adir.JOB/ali" "ark:$adir.JOB/words" "ark:$adir.JOB/lmwt.withlm" \ "ark:$adir.JOB/acwt" ark:- \| \ nbest-to-lattice ark:- "ark:|gzip -c >$dir/lat.JOB.gz" || exit 1; exit 0; fi if [ $stage -le 5 ]; then echo "$0: Creating archives with text-form of words, and LM scores without graph scores." # Do some small tasks; for these we don't use the queue, it will only slow us down. for n in `seq $nj`; do utils/int2sym.pl -f 2- $oldlang/words.txt < $adir.$n/words > $adir.$n/words_text || exit 1; mkdir -p $adir.$n/temp paste $adir.$n/lmwt.nolm $adir.$n/lmwt.withlm | awk '{print $1, ($4-$2);}' > \ $adir.$n/lmwt.lmonly || exit 1; done fi if [ $stage -le 6 ]; then echo "$0: invoking rnnlm_compute_scores.sh which calls rnnlm, to get RNN LM scores." $cmd JOB=1:$nj $dir/log/rnnlm_compute_scores.JOB.log \ utils/rnnlm_compute_scores.sh $rnndir $adir.JOB/temp $adir.JOB/words_text $adir.JOB/lmwt.rnn \ || exit 1; fi if [ $stage -le 7 ]; then echo "$0: reconstructing total LM+graph scores including interpolation of RNNLM and old LM scores." for n in `seq $nj`; do paste $adir.$n/lmwt.nolm $adir.$n/lmwt.lmonly $adir.$n/lmwt.rnn | awk -v rnnweight=$rnnweight \ '{ key=$1; graphscore=$2; lmscore=$4; rnnscore=$6; score = graphscore+(rnnweight*rnnscore)+((1-rnnweight)*lmscore); print $1,score; } ' > $adir.$n/lmwt.interp.$rnnweight || exit 1; done fi if [ $stage -le 8 ]; then echo "$0: reconstructing archives back into lattices." $cmd JOB=1:$nj $dir/log/reconstruct_lattice.JOB.log \ linear-to-nbest "ark:$adir.JOB/ali" "ark:$adir.JOB/words" \ "ark:$adir.JOB/lmwt.interp.$rnnweight" "ark:$adir.JOB/acwt" ark:- \| \ nbest-to-lattice ark:- "ark:|gzip -c >$dir/lat.JOB.gz" || exit 1; fi [ ! -x local/score.sh ] && \ echo "Not scoring because local/score.sh does not exist or not executable." && exit 1; local/score.sh --cmd "$cmd" $data $oldlang $dir exit 0; |