Blame view
Scripts/steps/train_diag_ubm.sh
4.88 KB
ec85f8892 first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
#!/bin/bash # Copyright Johns Hopkins University (Author: Daniel Povey), 2012. # Apache 2.0. # Train a diagonal mixture of Gaussians. This is trained without # reference to class labels-- except that, optionally, you can down-weight # silence phones, and alignments are needed for that. # # The current use for this is in fMMI training. # Begin configuration section. nj=4 cmd=run.pl num_iters=3 silence_weight= stage=-2 # The value "intermediate" is a number of Gaussians we first obtain by clustering # the Gaussians within each state of the model, before clustering down to # $num_Gauss. This is for efficiency. It's not a very important parameter, # as far as I know. intermediate=2000 num_gselect=50 # Number of Gaussian-selection indices to use while training # the model. # End configuration section. echo "$0 $@" # Print the command line for logging [ -f ./path.sh ] && . ./path.sh; # source the path. . parse_options.sh || exit 1; if [ $# != 5 ]; then echo "Usage: steps/train_diag_ubm.sh <num-gauss> <data> <lang> <alignment-dir|src-dir> <dir>" echo " e.g.: steps/train_diag_ubm.sh 400 data/train_si84 data/lang exp/tri2b_ali_si84 exp/ubm3c" echo "Options: " echo " --silence-weight <sil-weight> # default 1.0. Use to down-weight silence." echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs." echo " --nj <num-job> # number of parallel jobs to run." echo " --num-iters <niter> # number of iterations of training (default: $num_iters)" echo " --stage <stage> # stage to do partial re-run from." exit 1; fi num_gauss=$1 data=$2 lang=$3 alidir=$4 dir=$5 silphonelist=`cat $lang/phones/silence.csl` || exit 1; sdata=$data/split$nj splice_opts=`cat $alidir/splice_opts 2>/dev/null` mkdir -p $dir/log [[ -d $sdata && $data/feats.scp -ot $sdata ]] || split_data.sh $data $nj || exit 1; echo $nj > $dir/num_jobs if [ -f $alidir/final.mat ]; then feat_type=lda; else feat_type=delta; fi echo "$0: feature type is $feat_type" case $feat_type in delta) feats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | add-deltas ark:- ark:- |";; lda) feats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $alidir/final.mat ark:- ark:- |" cp $alidir/final.mat $dir ;; *) echo "Invalid feature type $feat_type" && exit 1; esac if [ -f $alidir/trans.1 ]; then echo Using transforms from $alidir; [ "$nj" -ne "`cat $alidir/num_jobs`" ] && \ echo "The number of jobs differs from alignment directory $alidir." && exit 1; feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark:$alidir/trans.JOB ark:- ark:- |" fi if [ ! -z "$silence_weight" ]; then [ ! -f $alidir/ali.1.gz ] && \ echo "You specified weighting for silence but $alidir/ali.1.gz does not exist." && exit 1; [ "$nj" -ne "`cat $alidir/num_jobs`" ] && \ echo "You specified silence weight but $alidir has different #jobs." && exit 1; weights="--weights='ark,s,cs:gunzip -c $alidir/ali.JOB.gz | ali-to-post ark:- ark:- | weight-silence-post $silence_weight $silphonelist $alidir/final.mdl ark:- ark:- | post-to-weights ark:- ark:- |'" else weights= fi # $intermediate should be more than $num_gauss.. [ $[$num_gauss*2] -gt $intermediate ] && intermediate=$[$num_gauss*2] \ && echo "Setting intermediate=$intermediate (it was too small)"; if [ $stage -le -2 ]; then echo "Clustering Gaussians in $alidir/final.mdl" $cmd $dir/log/cluster.log \ init-ubm --fullcov-ubm=false --intermediate-num-gauss=$intermediate \ --ubm-num-gauss=$num_gauss $alidir/final.mdl $alidir/final.occs $dir/0.dubm || exit 1; fi # Store Gaussian selection indices on disk-- this speeds up the training passes. if [ $stage -le -1 ]; then echo Getting Gaussian-selection info $cmd JOB=1:$nj $dir/log/gselect.JOB.log \ gmm-gselect --n=$num_gselect $dir/0.dubm "$feats" \ "ark:|gzip -c >$dir/gselect.JOB.gz" || exit 1; fi for x in `seq 0 $[$num_iters-1]`; do echo "Training pass $x" if [ $stage -le $x ]; then # Accumulate stats. $cmd JOB=1:$nj $dir/log/acc.$x.JOB.log \ gmm-global-acc-stats $weights "--gselect=ark,s,cs:gunzip -c $dir/gselect.JOB.gz|" \ $dir/$x.dubm "$feats" $dir/$x.JOB.acc || exit 1; if [ $x -lt $[$num_iters-1] ]; then # Don't remove low-count Gaussians till last iter, opt="--remove-low-count-gaussians=false" # or gselect info won't be valid any more. fi $cmd $dir/log/update.$x.log \ gmm-global-est $opt $dir/$x.dubm "gmm-global-sum-accs - $dir/$x.*.acc|" \ $dir/$[$x+1].dubm || exit 1; rm $dir/$x.*.acc $dir/$x.dubm fi done rm $dir/gselect.*.gz mv $dir/$num_iters.dubm $dir/final.dubm || exit 1; exit 0; |