Blame view
Scripts/steps/train_raw_sat.sh
12.7 KB
ec85f8892 first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
#!/bin/bash # Copyright 2012 Johns Hopkins University (Author: Daniel Povey). Apache 2.0. # This does Speaker Adapted Training (SAT). We train on fMLLR-adapted features, # but in this "raw" script, these transforms are at the level of the raw # cepstra. The model must be built on top of LDA+MLLT features, and the # transforms are estimated using the model, in a rather clever way. If there # are no raw transforms supplied in the alignment directory, it will estimate # transforms itself before building the tree (and in any case, it estimates # transforms a number of times during training). # You need to decode the models it builds with decode_raw_fmllr.sh # Begin configuration section. stage=-6 cmd=run.pl scale_opts="--transition-scale=1.0 --acoustic-scale=0.1 --self-loop-scale=0.1" beam=10 retry_beam=40 boost_silence=1.0 # Factor by which to boost silence likelihoods in alignment context_opts= # e.g. set this to "--context-width 5 --central-position 2" for quinphone. realign_iters="10 20 30"; fmllr_iters="2 4 6 12"; mllt_iters="3 5 7 10" dim=40 randprune=4.0 # This is approximately the ratio by which we will speed up the # LDA and MLLT calculations via randomized pruning. silence_weight=0.0 # Weight on silence in fMLLR estimation. num_iters=35 # Number of iterations of training max_iter_inc=25 # Last iter to increase #Gauss on. power=0.2 # Exponent for number of gaussians according to occurrence counts cluster_thresh=-1 # for build-tree control final bottom-up clustering of leaves phone_map= train_tree=true # End configuration section. echo "$0 $@" # Print the command line for logging [ -f path.sh ] && . ./path.sh . parse_options.sh || exit 1; if [ $# != 6 ]; then echo "Usage: steps/train_sat.sh <#leaves> <#gauss> <data> <lang> <ali-dir> <exp-dir>" echo " e.g.: steps/train_sat.sh 2500 15000 data/train_si84 data/lang exp/tri2b_ali_si84 exp/tri3b" echo "Main options (for others, see top of script file)" echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs." echo " --config <config-file> # config containing options" echo " --stage <stage> # stage to do partial re-run from." exit 1; fi numleaves=$1 totgauss=$2 data=$3 lang=$4 alidir=$5 dir=$6 for f in $data/feats.scp $lang/phones.txt $alidir/final.mdl $alidir/ali.1.gz; do [ ! -f $f ] && echo "train_sat.sh: no such file $f" && exit 1; done numgauss=$numleaves incgauss=$[($totgauss-$numgauss)/$max_iter_inc] # per-iter #gauss increment oov=`cat $lang/oov.int` nj=`cat $alidir/num_jobs` || exit 1; silphonelist=`cat $lang/phones/silence.csl` ciphonelist=`cat $lang/phones/context_indep.csl` || exit 1; sdata=$data/split$nj; splice_opts=`cat $alidir/splice_opts 2>/dev/null` # frame-splicing options. phone_map_opt= [ ! -z "$phone_map" ] && phone_map_opt="--phone-map='$phone_map'" mkdir -p $dir/log cp $alidir/splice_opts $dir 2>/dev/null # frame-splicing options. echo $nj >$dir/num_jobs [[ -d $sdata && $data/feats.scp -ot $sdata ]] || split_data.sh $data $nj || exit 1; # Set up features. if [[ ! -f $alidir/final.mat || ! -f $alidir/full.mat ]]; then echo "$0: expected to find $alidir/final.mat and $alidir/full.mat" exit 1 fi sisplicedfeats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | splice-feats $splice_opts ark:- ark:- |" sifeats="$sisplicedfeats transform-feats $alidir/final.mat ark:- ark:- |" ## Get initial fMLLR transforms (possibly from alignment dir) if [ -f $alidir/raw_trans.1 ]; then echo "$0: Using transforms from $alidir" cur_trans_dir=$alidir else if [ $stage -le -6 ]; then echo "$0: obtaining initial fMLLR transforms since not present in $alidir" # The next line is necessary because of $silphonelist otherwise being incorrect; would require # old $lang dir which would require another option. Not needed anyway. [ ! -z "$phone_map" ] && \ echo "$0: error: you must provide transforms if you use the --phone-map option." && exit 1; full_lda_mat="get-full-lda-mat --print-args=false $alidir/final.mat $alidir/full.mat -|" $cmd JOB=1:$nj $dir/log/fmllr.0.JOB.log \ ali-to-post "ark:gunzip -c $alidir/ali.JOB.gz|" ark:- \| \ weight-silence-post $silence_weight $silphonelist $alidir/final.mdl ark:- ark:- \| \ gmm-est-fmllr-raw --spk2utt=ark:$sdata/JOB/spk2utt $alidir/final.mdl \ "$full_lda_mat" "$sisplicedfeats" ark:- ark:$dir/raw_trans.JOB || exit 1; fi cur_trans_dir=$dir fi splicedfeats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark,s,cs:$cur_trans_dir/raw_trans.JOB ark:- ark:- | splice-feats $splice_opts ark:- ark:- |" if [ $stage -le -5 ]; then echo "Accumulating LDA statistics." $cmd JOB=1:$nj $dir/log/lda_acc.JOB.log \ ali-to-post "ark:gunzip -c $alidir/ali.JOB.gz|" ark:- \| \ weight-silence-post 0.0 $silphonelist $alidir/final.mdl ark:- ark:- \| \ acc-lda --rand-prune=$randprune $alidir/final.mdl "$splicedfeats" ark,s,cs:- \ $dir/lda.JOB.acc || exit 1; est-lda --write-full-matrix=$dir/full.mat --dim=$dim $dir/0.mat $dir/lda.*.acc \ 2>$dir/log/lda_est.log || exit 1; rm $dir/lda.*.acc fi cur_lda_iter=0 feats="$splicedfeats transform-feats $dir/$cur_lda_iter.mat ark:- ark:- |" # To build the tree, we use the previous directory's LDA transform, which # is better as it has MLLT also. It leads to higher auxiliary function # improvements in tree building, which is generally a good thing. tree_feats="$splicedfeats transform-feats $alidir/final.mat ark:- ark:- |" if [ $stage -le -4 ] && $train_tree; then # Get tree stats. echo "$0: Accumulating tree stats" $cmd JOB=1:$nj $dir/log/acc_tree.JOB.log \ acc-tree-stats $context_opts --ci-phones=$ciphonelist $alidir/final.mdl "$tree_feats" \ "ark:gunzip -c $alidir/ali.JOB.gz|" $dir/JOB.treeacc || exit 1; [ "`ls $dir/*.treeacc | wc -w`" -ne "$nj" ] && echo "$0: Wrong #tree-accs" && exit 1; $cmd $dir/log/sum_tree_acc.log \ sum-tree-stats $dir/treeacc $dir/*.treeacc || exit 1; rm $dir/*.treeacc fi if [ $stage -le -3 ] && $train_tree; then echo "$0: Getting questions for tree clustering." # preparing questions, roots file... cluster-phones $context_opts $dir/treeacc $lang/phones/sets.int $dir/questions.int 2> $dir/log/questions.log || exit 1; cat $lang/phones/extra_questions.int >> $dir/questions.int compile-questions $context_opts $lang/topo $dir/questions.int $dir/questions.qst 2>$dir/log/compile_questions.log || exit 1; echo "$0: Building the tree" $cmd $dir/log/build_tree.log \ build-tree $context_opts --verbose=1 --max-leaves=$numleaves \ --cluster-thresh=$cluster_thresh $dir/treeacc $lang/phones/roots.int \ $dir/questions.qst $lang/topo $dir/tree || exit 1; fi if [ $stage -le -2 ]; then echo "$0: Initializing the model" # Since we trained the tree on different feats, we don't use gmm-init-model, which # would initialize the tree with invalid features. This doesn't really matter anyway, # the first iteration of training will set suitable initial parameters. cp $alidir/tree $dir/ || exit 1; $cmd JOB=1 $dir/log/init_model.log \ gmm-init-model-flat $dir/tree $lang/topo $dir/1.mdl \ "$tree_feats subset-feats ark:- ark:-|" || exit 1; fi if [ $stage -le -1 ]; then # Convert the alignments. echo "$0: Converting alignments from $alidir to use current tree" $cmd JOB=1:$nj $dir/log/convert.JOB.log \ convert-ali $phone_map_opt $alidir/final.mdl $dir/1.mdl $dir/tree \ "ark:gunzip -c $alidir/ali.JOB.gz|" "ark:|gzip -c >$dir/ali.JOB.gz" || exit 1; fi if [ $stage -le 0 ] && [ "$realign_iters" != "" ]; then echo "$0: Compiling graphs of transcripts" $cmd JOB=1:$nj $dir/log/compile_graphs.JOB.log \ compile-train-graphs $dir/tree $dir/1.mdl $lang/L.fst \ "ark:utils/sym2int.pl --map-oov $oov -f 2- $lang/words.txt < $sdata/JOB/text |" \ "ark:|gzip -c >$dir/fsts.JOB.gz" || exit 1; fi x=1 while [ $x -lt $num_iters ]; do echo Pass $x if echo $realign_iters | grep -w $x >/dev/null && [ $stage -le $x ]; then echo Aligning data mdl="gmm-boost-silence --boost=$boost_silence `cat $lang/phones/optional_silence.csl` $dir/$x.mdl - |" $cmd JOB=1:$nj $dir/log/align.$x.JOB.log \ gmm-align-compiled $scale_opts --beam=$beam --retry-beam=$retry_beam "$mdl" \ "ark:gunzip -c $dir/fsts.JOB.gz|" "$feats" \ "ark:|gzip -c >$dir/ali.JOB.gz" || exit 1; fi if echo $fmllr_iters | grep -w $x >/dev/null; then if [ $stage -le $x ]; then echo Estimating fMLLR transforms # We estimate a transform that's additional to the previous transform; # we'll compose them. full_lda_mat="get-full-lda-mat --print-args=false $dir/$cur_lda_iter.mat $dir/full.mat - |" $cmd JOB=1:$nj $dir/log/fmllr.$x.JOB.log \ ali-to-post "ark:gunzip -c $dir/ali.JOB.gz|" ark:- \| \ weight-silence-post $silence_weight $silphonelist $dir/$x.mdl ark:- ark:- \| \ gmm-est-fmllr-raw --spk2utt=ark:$sdata/JOB/spk2utt $dir/$x.mdl "$full_lda_mat" \ "$splicedfeats" ark:- ark:$dir/tmp_trans.JOB || exit 1; for n in `seq $nj`; do ! ( compose-transforms --b-is-affine=true \ ark:$dir/tmp_trans.$n ark:$cur_trans_dir/raw_trans.$n ark:$dir/composed_trans.$n \ && mv $dir/composed_trans.$n $dir/raw_trans.$n && \ rm $dir/tmp_trans.$n ) 2>$dir/log/compose_transforms.$x.log \ && echo "$0: Error composing transforms" && exit 1; done fi cur_trans_dir=$dir splicedfeats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark,s,cs:$cur_trans_dir/raw_trans.JOB ark:- ark:- | splice-feats $splice_opts ark:- ark:- |" feats="$splicedfeats transform-feats $dir/$cur_lda_iter.mat ark:- ark:- |" fi if echo $mllt_iters | grep -w $x >/dev/null; then if [ $stage -le $x ]; then echo "Estimating MLLT" $cmd JOB=1:$nj $dir/log/macc.$x.JOB.log \ ali-to-post "ark:gunzip -c $dir/ali.JOB.gz|" ark:- \| \ weight-silence-post 0.0 $silphonelist $dir/$x.mdl ark:- ark:- \| \ gmm-acc-mllt --rand-prune=$randprune $dir/$x.mdl "$feats" ark:- $dir/$x.JOB.macc \ || exit 1; est-mllt $dir/$x.mat.new $dir/$x.*.macc 2> $dir/log/mupdate.$x.log || exit 1; gmm-transform-means $dir/$x.mat.new $dir/$x.mdl $dir/$x.mdl \ 2> $dir/log/transform_means.$x.log || exit 1; compose-transforms --print-args=false $dir/$x.mat.new $dir/$cur_lda_iter.mat $dir/$x.mat || exit 1; rm $dir/$x.*.macc fi cur_lda_iter=$x feats="$splicedfeats transform-feats $dir/$cur_lda_iter.mat ark:- ark:- |" fi if [ $stage -le $x ]; then $cmd JOB=1:$nj $dir/log/acc.$x.JOB.log \ gmm-acc-stats-ali $dir/$x.mdl "$feats" \ "ark,s,cs:gunzip -c $dir/ali.JOB.gz|" $dir/$x.JOB.acc || exit 1; [ `ls $dir/$x.*.acc | wc -w` -ne "$nj" ] && echo "$0: Wrong #accs" && exit 1; $cmd $dir/log/update.$x.log \ gmm-est --power=$power --write-occs=$dir/$[$x+1].occs --mix-up=$numgauss $dir/$x.mdl \ "gmm-sum-accs - $dir/$x.*.acc |" $dir/$[$x+1].mdl || exit 1; rm $dir/$x.mdl $dir/$x.*.acc rm $dir/$x.occs 2>/dev/null fi [ $x -le $max_iter_inc ] && numgauss=$[$numgauss+$incgauss]; x=$[$x+1]; done if [ $stage -le $x ]; then # Accumulate stats for "alignment model"-- this model is # computed with the speaker-independent features, but matches Gaussian-for-Gaussian # with the final speaker-adapted model. sifeats="$sisplicedfeats transform-feats $dir/$cur_lda_iter.mat ark:- ark:- |" $cmd JOB=1:$nj $dir/log/acc_alimdl.JOB.log \ ali-to-post "ark:gunzip -c $dir/ali.JOB.gz|" ark:- \| \ gmm-acc-stats-twofeats $dir/$x.mdl "$feats" "$sifeats" \ ark,s,cs:- $dir/$x.JOB.acc || exit 1; [ `ls $dir/$x.*.acc | wc -w` -ne "$nj" ] && echo "$0: Wrong #accs" && exit 1; # Update model. $cmd $dir/log/est_alimdl.log \ gmm-est --power=$power --remove-low-count-gaussians=false $dir/$x.mdl \ "gmm-sum-accs - $dir/$x.*.acc|" $dir/$x.alimdl || exit 1; rm $dir/$x.*.acc fi rm $dir/final.{mdl,alimdl,mat,occs} 2>/dev/null ln -s $x.mdl $dir/final.mdl ln -s $x.occs $dir/final.occs ln -s $x.alimdl $dir/final.alimdl ln -s $cur_lda_iter.mat $dir/final.mat utils/summarize_warnings.pl $dir/log ( echo "$0: Likelihood evolution (not sure if this is totally correct):" for x in `seq $[$num_iters-1]`; do tail -n 30 $dir/log/acc.$x.*.log | awk '/Overall avg like/{l += $(NF-3)*$(NF-1); t += $(NF-1); } /Overall average logdet/{d += $(NF-3)*$(NF-1); t2 += $(NF-1);} END{ d /= t2; l /= t; printf("%s ", d+l); } ' done echo ) | tee $dir/log/summary.log echo Done |