Blame view
Scripts/steps/train_smbr.sh
6.15 KB
ec85f8892 first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
#!/bin/bash # Copyright 2012 Johns Hopkins University (Author: Daniel Povey). Apache 2.0. # sMBR training # 4 iterations (by default) of Extended Baum-Welch update. # # For the numerator we have a fixed alignment rather than a lattice-- # this actually follows from the way lattices are defined in Kaldi, which # is to have a single path for each word (output-symbol) sequence. # Begin configuration section. cmd=run.pl num_iters=4 cancel=true # if true, cancel num and den counts on each frame. tau=400 weight_tau=10 acwt=0.1 stage=0 smooth_to_mode=true # End configuration section echo "$0 $@" # Print the command line for logging [ -f ./path.sh ] && . ./path.sh; # source the path. . parse_options.sh || exit 1; if [ $# -ne 5 ]; then echo "Usage: steps/train_smbr.sh <data> <lang> <ali> <denlats> <exp>" echo " e.g.: steps/train_smbr.sh data/train_si84 data/lang exp/tri2b_ali_si84 exp/tri2b_denlats_si84 exp/tri2b_smbr" echo "Main options (for others, see top of script file)" echo " --cancel (true|false) # cancel stats (true by default)" echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs." echo " --config <config-file> # config containing options" echo " --stage <stage> # stage to do partial re-run from." echo " --tau # tau for i-smooth to last iter (default 200)" exit 1; fi data=$1 lang=$2 alidir=$3 denlatdir=$4 dir=$5 mkdir -p $dir/log for f in $data/feats.scp $alidir/{tree,final.mdl,ali.1.gz} $denlatdir/lat.1.gz; do [ ! -f $f ] && echo "$0: no such file $f" && exit 1; done nj=`cat $alidir/num_jobs` || exit 1; [ "$nj" -ne "`cat $denlatdir/num_jobs`" ] && \ echo "$alidir and $denlatdir have different num-jobs" && exit 1; sdata=$data/split$nj splice_opts=`cat $alidir/splice_opts 2>/dev/null` mkdir -p $dir/log cp $alidir/splice_opts $dir 2>/dev/null [[ -d $sdata && $data/feats.scp -ot $sdata ]] || split_data.sh $data $nj || exit 1; echo $nj > $dir/num_jobs cp $alidir/{final.mdl,tree} $dir silphonelist=`cat $lang/phones/silence.csl` || exit 1; # Set up features if [ -f $alidir/final.mat ]; then feat_type=lda; else feat_type=delta; fi echo "$0: feature type is $feat_type" case $feat_type in delta) feats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | add-deltas ark:- ark:- |";; lda) feats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $alidir/final.mat ark:- ark:- |" cp $alidir/final.mat $dir ;; *) echo "Invalid feature type $feat_type" && exit 1; esac [ -f $alidir/trans.1 ] && echo Using transforms from $alidir && \ feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark,s,cs:$alidir/trans.JOB ark:- ark:- |" lats="ark:gunzip -c $denlatdir/lat.JOB.gz|" cur_mdl=$alidir/final.mdl x=0 while [ $x -lt $num_iters ]; do echo "Iteration $x of sMBR training" # Note: the num and den states are accumulated at the same time, so we # can cancel them per frame. if [ $stage -le $x ]; then $cmd JOB=1:$nj $dir/log/acc.$x.JOB.log \ gmm-rescore-lattice $cur_mdl "$lats" "$feats" ark:- \| \ lattice-to-smbr-post --acoustic-scale=$acwt $cur_mdl \ "ark,s,cs:gunzip -c $alidir/ali.JOB.gz | ali-to-post ark:- ark:- |" ark:- ark:- \| \ gmm-acc-stats2 $cur_mdl "$feats" ark,s,cs:- \ $dir/num_acc.$x.JOB.acc $dir/den_acc.$x.JOB.acc || exit 1; n=`echo $dir/{num,den}_acc.$x.*.acc | wc -w`; [ "$n" -ne $[$nj*2] ] && \ echo "Wrong number of sMBR accumulators $n versus 2*$nj" && exit 1; $cmd $dir/log/den_acc_sum.$x.log \ gmm-sum-accs $dir/den_acc.$x.acc $dir/den_acc.$x.*.acc || exit 1; rm $dir/den_acc.$x.*.acc $cmd $dir/log/num_acc_sum.$x.log \ gmm-sum-accs $dir/num_acc.$x.acc $dir/num_acc.$x.*.acc || exit 1; rm $dir/num_acc.$x.*.acc # note: this tau value is for smoothing towards model parameters, not # as in the Boosted MMI paper, not towards the ML stats as in the earlier # work on discriminative training (e.g. my thesis). # You could use gmm-ismooth-stats to smooth to the ML stats, if you had # them available [here they're not available if cancel=true]. if ! $smooth_to_model; then echo "Iteration $x of sMBR: computing ml (smoothing) stats" $cmd JOB=1:$nj $dir/log/acc_ml.$x.JOB.log \ gmm-acc-stats $cur_mdl "$feats" \ "ark,s,cs:gunzip -c $alidir/ali.JOB.gz | ali-to-post ark:- ark:- |" \ $dir/ml.$x.JOB.acc || exit 1; $cmd $dir/log/acc_ml_sum.$x.log \ gmm-sum-accs $dir/ml.$x.acc $dir/ml.$x.*.acc || exit 1; rm $dir/ml.$x.*.acc num_stats="gmm-ismooth-stats --tau=$tau $dir/ml.$x.acc $dir/num_acc.$x.acc -|" else num_stats="gmm-ismooth-stats --smooth-from-model=true --tau=$tau $cur_mdl $dir/num_acc.$x.acc -|" fi $cmd $dir/log/update.$x.log \ gmm-est-gaussians-ebw $cur_mdl "$num_stats" $dir/den_acc.$x.acc - \| \ gmm-est-weights-ebw - $dir/num_acc.$x.acc $dir/den_acc.$x.acc $dir/$[$x+1].mdl || exit 1; rm $dir/{den,num}_acc.$x.acc fi cur_mdl=$dir/$[$x+1].mdl # Some diagnostics: the objective function progress and auxiliary-function # improvement. tail -n 50 $dir/log/acc.$x.*.log | perl -e 'while(<STDIN>) { if(m/lattice-to-smbr-post.+Overall average frame-accuracy is (\S+) over (\S+) frames/) { $tot_objf += $1*$2; $tot_frames += $2; }} $tot_objf /= $tot_frames; print "$tot_objf $tot_frames "; ' > $dir/tmpf objf=`cat $dir/tmpf | awk '{print $1}'`; nf=`cat $dir/tmpf | awk '{print $2}'`; rm $dir/tmpf impr=`grep -w Overall $dir/log/update.$x.log | awk '{x += $10*$12;} END{print x;}'` impr=`perl -e "print ($impr*$acwt/$nf);"` # We multiply by acwt, and divide by $nf which is the "real" number of frames. # This gives us a projected objective function improvement. echo "Iteration $x: objf was $objf, sMBR auxf change was $impr" | tee $dir/objf.$x.log x=$[$x+1] done echo "sMBR training finished" rm $dir/final.mdl 2>/dev/null ln -s $x.mdl $dir/final.mdl exit 0; |