Blame view
Scripts/steps/.svn/text-base/decode_fmmi.sh.svn-base
4.86 KB
ec85f8892 first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
#!/bin/bash # Copyright 2012 Johns Hopkins University (Author: Daniel Povey) # Apache 2.0 # Decoding of fMMI or fMPE models (feature-space discriminative training). # If transform-dir supplied, expects e.g. fMLLR transforms in that dir. # Begin configuration section. stage=1 iter=final nj=4 cmd=run.pl maxactive=7000 beam=13.0 latbeam=6.0 acwt=0.083333 # note: only really affects pruning (scoring is on lattices). ngselect=2; # Just use the 2 top Gaussians for fMMI/fMPE. Should match train. transform_dir= num_threads=1 # if >1, will use gmm-latgen-faster-parallel parallel_opts= # If you supply num-threads, you should supply this too. scoring_opts= # End configuration section. echo "$0 $@" # Print the command line for logging [ -f ./path.sh ] && . ./path.sh; # source the path. . parse_options.sh || exit 1; if [ $# != 3 ]; then echo "Usage: steps/decode_fmmi.sh [options] <graph-dir> <data-dir> <decode-dir>" echo "... where <decode-dir> is assumed to be a sub-directory of the directory" echo " where the model is." echo "e.g.: steps/decode_fmmi.sh exp/mono/graph_tgpr data/test_dev93 exp/mono/decode_dev93_tgpr" echo "" echo "This script works on CMN + (delta+delta-delta | LDA+MLLT) features; it works out" echo "what type of features you used (assuming it's one of these two)" echo "You can also use fMLLR features-- you have to supply --transform-dir option." echo "" echo "main options (for others, see top of script file)" echo " --config <config-file> # config containing options" echo " --nj <nj> # number of parallel jobs" echo " --iter <iter> # Iteration of model to test." echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs." echo " --acwt <float> # acoustic scale used for lattice generation " echo " --transform-dir <transform-dir> # where to find fMLLR transforms." echo " --scoring-opts <string> # options to local/score.sh" echo " # speaker-adapted decoding" echo " --num-threads <n> # number of threads to use, default 1." echo " --parallel-opts <opts> # e.g. '-pe smp 4' if you supply --num-threads 4" exit 1; fi graphdir=$1 data=$2 dir=$3 srcdir=`dirname $dir`; # The model directory is one level up from decoding directory. sdata=$data/split$nj; splice_opts=`cat $srcdir/splice_opts 2>/dev/null` thread_string= [ $num_threads -gt 1 ] && thread_string="-parallel --num-threads=$num_threads" mkdir -p $dir/log [[ -d $sdata && $data/feats.scp -ot $sdata ]] || split_data.sh $data $nj || exit 1; echo $nj > $dir/num_jobs model=$srcdir/$iter.mdl for f in $sdata/1/feats.scp $sdata/1/cmvn.scp $model $graphdir/HCLG.fst; do [ ! -f $f ] && echo "decode_fmmi.sh: no such file $f" && exit 1; done if [ -f $srcdir/final.mat ]; then feat_type=lda; else feat_type=delta; fi echo "decode_fmmi.sh: feature type is $feat_type"; case $feat_type in delta) feats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | add-deltas ark:- ark:- |";; lda) feats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $srcdir/final.mat ark:- ark:- |";; *) echo "Invalid feature type $feat_type" && exit 1; esac if [ ! -z "$transform_dir" ]; then # add transforms to features... echo "Using fMLLR transforms from $transform_dir" [ ! -f $transform_dir/trans.1 ] && echo "Expected $transform_dir/trans.1 to exist." [ "`cat $transform_dir/num_jobs`" -ne $nj ] && \ echo "Mismatch in number of jobs with $transform_dir"; feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark:$transform_dir/trans.JOB ark:- ark:- |" fi fmpefeats="$feats fmpe-apply-transform $srcdir/$iter.fmpe ark:- 'ark,s,cs:gunzip -c $dir/gselect.JOB.gz|' ark:- |" if [ $stage -le 1 ]; then # Get Gaussian selection info. $cmd JOB=1:$nj $dir/log/gselect.JOB.log \ gmm-gselect --n=$ngselect $srcdir/$iter.fmpe "$feats" \ "ark:|gzip -c >$dir/gselect.JOB.gz" || exit 1; fi if [ $stage -le 2 ]; then $cmd $parallel_opts JOB=1:$nj $dir/log/decode.JOB.log \ gmm-latgen-faster$thread_string --max-active=$maxactive --beam=$beam --lattice-beam=$latbeam \ --acoustic-scale=$acwt --allow-partial=true --word-symbol-table=$graphdir/words.txt \ $model $graphdir/HCLG.fst "$fmpefeats" "ark:|gzip -c > $dir/lat.JOB.gz" || exit 1; fi if [ $stage -le 3 ]; then [ ! -x local/score.sh ] && \ echo "Not scoring because local/score.sh does not exist or not executable." && exit 1; local/score.sh $scoring_opts --cmd "$cmd" $data $graphdir $dir fi exit 0; |