Blame view
Scripts/steps/.svn/text-base/pretrain_dbn.sh.svn-base
9.79 KB
ec85f8892 first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
#!/bin/bash # Copyright 2013 Karel Vesely # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED # WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, # MERCHANTABLITY OR NON-INFRINGEMENT. # See the Apache 2 License for the specific language governing permissions and # limitations under the License. # To be run from .. # # Deep Belief Network pre-training by Contrastive Divergence (CD-1) algorithm. # The script can pre-train on plain features (ie. saved fMLLR features), # or modified features (CMN, delta). # The script creates feature-transform in nnet format, which contains splice # and shift+scale (zero mean and unit variance on DBN input). # # For special cases it is possible to use external feature-transform. # # Begin configuration. # # nnet config nn_depth=6 #number of hidden layers hid_dim=2048 #number of units per layer # number of iterations rbm_iter=1 #number of pre-training epochs (Gaussian-Bernoulli RBM has 2x more) rbm_drop_data=0.0 #sample the training set, 1.0 drops all the data, 0.0 keeps all # pre-training opts rbm_lrate=0.4 #RBM learning rate rbm_lrate_low=0.01 #lower RBM learning rate (for Gaussian units) rbm_l2penalty=0.0002 #L2 penalty (increases RBM-mixing rate) # data processing config copy_feats=true # resave the features randomized consecutively to tmpdir # feature config feature_transform= # Optionally reuse feature processing front-end (override splice,etc.) delta_order= # Optionally use deltas on the input features apply_cmvn=false # Optionally do CMVN of the input features norm_vars=false # When apply_cmvn=true, this enables CVN splice=5 # Temporal splicing splice_step=1 # Stepsize of the splicing (1 is consecutive splice, # value 2 would do [ -10 -8 -6 -4 -2 0 2 4 6 8 10 ] splicing) # misc. verbose=1 # enable per-cache reports # gpu config use_gpu_id= # manually select GPU id to run on, (-1 disables GPU) # End configuration. echo "$0 $@" # Print the command line for logging [ -f path.sh ] && . ./path.sh; . parse_options.sh || exit 1; if [ $# != 2 ]; then echo "Usage: $0 <data> <exp-dir>" echo " e.g.: $0 data/train exp/rbm_pretrain" echo "main options (for others, see top of script file)" echo " --config <config-file> # config containing options" echo "" echo " --nn-depth <N> # number of RBM layers" echo " --hid-dim <N> # number of hidden units per layer" echo " --rbm-iter <N> # number of CD-1 iterations per layer" echo " --dbm-drop-data <float> # probability of frame-dropping," echo " # can be used to subsample large datasets" echo " --rbm-lrate <float> # learning-rate for Bernoulli-Bernoulli RBMs" echo " --rbm-lrate-low <float> # learning-rate for Gaussian-Bernoulli RBM" echo "" echo " --copy-feats <bool> # copy features to /tmp, to accelerate training" echo " --apply-cmvn <bool> # normalize input features (opt.)" echo " --norm-vars <bool> # use variance normalization (opt.)" echo " --splice <N> # splice +/-N frames of input features" exit 1; fi data=$1 dir=$2 for f in $data/feats.scp; do [ ! -f $f ] && echo "$0: no such file $f" && exit 1; done echo "# INFO" echo "$0 : Pre-training Deep Belief Network as a stack of RBMs" printf "\t dir : $dir " printf "\t Train-set : $data " [ -e $dir/${nn_depth}.dbn ] && echo "$0 Skipping, already have $dir/${nn_depth}.dbn" && exit 0 mkdir -p $dir/log ###### PREPARE FEATURES ###### echo echo "# PREPARING FEATURES" # shuffle the list echo "Preparing train/cv lists" cat $data/feats.scp | utils/shuffle_list.pl --srand ${seed:-777} > $dir/train.scp # print the list size wc -l $dir/train.scp #re-save the shuffled features, so they are stored sequentially on the disk in /tmp/ if [ "$copy_feats" == "true" ]; then tmpdir=$(mktemp -d); mv $dir/train.scp $dir/train.scp_non_local utils/nnet/copy_feats.sh $dir/train.scp_non_local $tmpdir $dir/train.scp #remove data on exit... trap "echo \"Removing features tmpdir $tmpdir @ $(hostname)\"; rm -r $tmpdir" EXIT fi #create a 10k utt subset for global cmvn estimates head -n 10000 $dir/train.scp > $dir/train.scp.10k ###### PREPARE FEATURE PIPELINE ###### #read the features feats="ark:copy-feats scp:$dir/train.scp ark:- |" #optionally add per-speaker CMVN if [ $apply_cmvn == "true" ]; then echo "Will use CMVN statistics : $data/cmvn.scp" [ ! -r $data/cmvn.scp ] && echo "Cannot find cmvn stats $data/cmvn.scp" && exit 1; cmvn="scp:$data/cmvn.scp" feats="$feats apply-cmvn --print-args=false --norm-vars=$norm_vars --utt2spk=ark:$data/utt2spk $cmvn ark:- ark:- |" # keep track of norm_vars option echo "$norm_vars" >$dir/norm_vars else echo "apply_cmvn disabled (per speaker norm. on input features)" fi #optionally add deltas if [ "$delta_order" != "" ]; then feats="$feats add-deltas --delta-order=$delta_order ark:- ark:- |" echo "$delta_order" > $dir/delta_order fi #get feature dim echo -n "Getting feature dim : " feat_dim=$(feat-to-dim --print-args=false scp:$dir/train.scp -) echo $feat_dim # Now we will start building feature_transform which will # be applied in CUDA to gain more speed. # # We will use 1GPU for both feature_transform and MLP training in one binary tool. # This is against the kaldi spirit, but it is necessary, because on some sites a GPU # cannot be shared accross by two or more processes (compute exclusive mode), # and we would like to use single GPU per training instance, # so that the grid resources can be used efficiently... if [ ! -z "$feature_transform" ]; then echo Using already prepared feature_transform: $feature_transform cp $feature_transform $dir/final.feature_transform else # Generate the splice transform echo "Using splice +/- $splice , step $splice_step" feature_transform=$dir/tr_splice$splice-$splice_step.nnet utils/nnet/gen_splice.py --fea-dim=$feat_dim --splice=$splice --splice-step=$splice_step > $feature_transform # Renormalize the MLP input to zero mean and unit variance feature_transform_old=$feature_transform feature_transform=${feature_transform%.nnet}_cmvn-g.nnet echo "Renormalizing MLP input features into $feature_transform" nnet-forward ${use_gpu_id:+ --use-gpu-id=$use_gpu_id} \ $feature_transform_old "$(echo $feats | sed 's|train.scp|train.scp.10k|')" \ ark:- 2>$dir/log/cmvn_glob_fwd.log |\ compute-cmvn-stats ark:- - | cmvn-to-nnet - - |\ nnet-concat --binary=false $feature_transform_old - $feature_transform # MAKE LINK TO THE FINAL feature_transform, so the other scripts will find it ###### [ -f $dir/final.feature_transform ] && unlink $dir/final.feature_transform (cd $dir; ln -s $(basename $feature_transform) final.feature_transform ) fi ###### GET THE DIMENSIONS ###### num_fea=$(feat-to-dim --print-args=false "$feats nnet-forward --use-gpu-id=-1 $feature_transform ark:- ark:- |" - 2>/dev/null) num_hid=$hid_dim ###### PERFORM THE PRE-TRAINING ###### for depth in $(seq 1 $nn_depth); do echo echo "# PRE-TRAINING RBM LAYER $depth" RBM=$dir/$depth.rbm [ -f $RBM ] && echo "RBM '$RBM' already trained, skipping." && continue #The first RBM needs special treatment, because of Gussian input nodes if [ "$depth" == "1" ]; then #This is Gaussian-Bernoulli RBM #initialize echo "Initializing '$RBM.init'" utils/nnet/gen_rbm_init.py --dim=${num_fea}:${num_hid} --gauss --vistype=gauss --hidtype=bern > $RBM.init || exit 1 #pre-train echo "Pretraining '$RBM' (reduced lrate and 2x more iters)" rbm-train-cd1-frmshuff --learn-rate=$rbm_lrate_low --l2-penalty=$rbm_l2penalty \ --num-iters=$((2*$rbm_iter)) --drop-data=$rbm_drop_data --verbose=$verbose \ --feature-transform=$feature_transform \ ${use_gpu_id:+ --use-gpu-id=$use_gpu_id} \ $RBM.init "$feats" $RBM 2>$dir/log/rbm.$depth.log || exit 1 else #This is Bernoulli-Bernoulli RBM #cmvn stats for init echo "Computing cmvn stats '$dir/$depth.cmvn' for RBM initialization" if [ ! -f $dir/$depth.cmvn ]; then nnet-forward ${use_gpu_id:+ --use-gpu-id=$use_gpu_id} \ "nnet-concat $feature_transform $dir/$((depth-1)).dbn - |" \ "$(echo $feats | sed 's|train.scp|train.scp.10k|')" \ ark:- 2>$dir/log/cmvn_fwd.$depth.log | \ compute-cmvn-stats ark:- - 2>$dir/log/cmvn.$depth.log | \ cmvn-to-nnet - $dir/$depth.cmvn || exit 1 else echo compute-cmvn-stats already done, skipping. fi #initialize echo "Initializing '$RBM.init'" utils/nnet/gen_rbm_init.py --dim=${num_hid}:${num_hid} --gauss --vistype=bern --hidtype=bern --cmvn-nnet=$dir/$depth.cmvn > $RBM.init || exit 1 #pre-train echo "Pretraining '$RBM'" rbm-train-cd1-frmshuff --learn-rate=$rbm_lrate --l2-penalty=$rbm_l2penalty \ --num-iters=$rbm_iter --drop-data=$rbm_drop_data --verbose=$verbose \ --feature-transform="nnet-concat $feature_transform $dir/$((depth-1)).dbn - |" \ ${use_gpu_id:+ --use-gpu-id=$use_gpu_id} \ $RBM.init "$feats" $RBM 2>$dir/log/rbm.$depth.log || exit 1 fi #Create DBN stack if [ "$depth" == "1" ]; then rbm-convert-to-nnet --binary=true $RBM $dir/$depth.dbn else rbm-convert-to-nnet --binary=true $RBM - | \ nnet-concat $dir/$((depth-1)).dbn - $dir/$depth.dbn fi done echo echo "# REPORT" echo "# RBM pre-training progress (line per-layer)" grep progress $dir/log/rbm.*.log echo echo "Pre-training finished." sleep 3 exit 0 |