Blame view
Scripts/steps/.svn/text-base/train_mmi_fmmi.sh.svn-base
10.2 KB
ec85f8892 first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
#!/bin/bash # by Johns Hopkins University (Author: Daniel Povey), 2012. Apache 2.0. # This script does MMI discriminative training, including # feature-space (like fMPE) and model-space components. # If you give the --boost option it does "boosted MMI" (BMMI). # On the iterations of training it alternates feature-space # and model-space training. We do 8 iterations in total-- # 4 of each type ((B)MMI, f(B)MMI) # Begin configuration section. cmd=run.pl schedule="fmmi fmmi fmmi fmmi mmi mmi mmi mmi" boost=0.0 learning_rate=0.01 tau=400 # For model. Note: we're doing smoothing "to the previous iteration", # so --smooth-from-model so 400 seems like a more sensible default # than 100. We smooth to the previous iteration because now # we are discriminatively training the features (and not using # the indirect differential), so it seems like it wouldn't make # sense to use any element of ML. weight_tau=10 # for model weights. cancel=true # if true, cancel num and den counts as described in # the boosted MMI paper. zero_if_disjoint=false # if true, ignore stats from frames where num + den # have no overlap. indirect=true # if true, use indirect derivative. acwt=0.1 stage=-1 ngselect=2; # Just the 2 top Gaussians. Beyond that, adding more Gaussians # wouldn't make much difference since the posteriors would be very small. # End configuration section. echo "$0 $@" # Print the command line for logging [ -f ./path.sh ] && . ./path.sh; . parse_options.sh || exit 1; if [ $# != 6 ]; then echo "Usage: steps/train_mmi_fmmi.sh <data> <lang> <ali-dir> <diag-ubm-dir> <denlat-dir> <exp-dir>" echo " e.g.: steps/train_mmi_fmmi.sh data/train_si84 data/lang exp/tri2b_ali_si84 exp/ubm2d exp/tri2b_denlats_si84 exp/tri2b_fmmi" echo "Main options (for others, see top of script file)" echo " --boost <boost-weight> # (e.g. 0.1) ... boosted MMI." echo " --cancel (true|false) # cancel stats (true by default)" echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs." echo " --config <config-file> # config containing options" echo " --stage <stage> # stage to do partial re-run from." echo " --tau # tau for i-smooth to last iter (default 200)" echo " --learning-rate # learning rate for fMMI, default 0.01" echo " --schedule # learning schedule: by default," echo " # \"fmmi mmi fmmi mmi fmmi mmi fmmi mmi\"" exit 1; fi data=$1 lang=$2 alidir=$3 dubmdir=$4 # where diagonal UBM is. denlatdir=$5 dir=$6 silphonelist=`cat $lang/phones/silence.csl` mkdir -p $dir/log for f in $data/feats.scp $lang/phones.txt $dubmdir/final.dubm $alidir/final.mdl \ $alidir/ali.1.gz $denlatdir/lat.1.gz; do [ ! -f $f ] && echo "Expected file $f to exist" && exit 1; done cp $alidir/final.mdl $alidir/tree $dir || exit 1; nj=`cat $alidir/num_jobs` || exit 1; [ "$nj" -ne "`cat $denlatdir/num_jobs`" ] && \ echo "$alidir and $denlatdir have different num-jobs" && exit 1; sdata=$data/split$nj splice_opts=`cat $alidir/splice_opts 2>/dev/null` # frame-splicing options. mkdir -p $dir/log cp $alidir/splice_opts $dir 2>/dev/null # frame-splicing options. [[ -d $sdata && $data/feats.scp -ot $sdata ]] || split_data.sh $data $nj || exit 1; if [ -f $alidir/final.mat ]; then feat_type=lda; else feat_type=delta; fi echo "$0: feature type is $feat_type" # Note: $feats is the features before fMPE. case $feat_type in delta) feats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | add-deltas ark:- ark:- |";; lda) feats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $alidir/final.mat ark:- ark:- |" cp $alidir/final.mat $dir ;; *) echo "Invalid feature type $feat_type" && exit 1; esac [ -f $alidir/trans.1 ] && echo Using transforms from $alidir && \ feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark:$alidir/trans.JOB ark:- ark:- |" lats="ark:gunzip -c $denlatdir/lat.JOB.gz|" if [[ "$boost" != "0.0" && "$boost" != 0 ]]; then lats="$lats lattice-boost-ali --b=$boost --silence-phones=$silphonelist $alidir/final.mdl ark:- 'ark,s,cs:gunzip -c $alidir/ali.JOB.gz|' ark:- |" fi fmpefeats="$feats" # At first, the features "after fMPE" are the same as the # base features. # Initialize the fMPE object. Note: we call it .fmpe because # that's what it was called in the original paper, but since # we're using the MMI objective function, it's really fMMI. fmpe-init $dubmdir/final.dubm $dir/0.fmpe 2>$dir/log/fmpe_init.log || exit 1; if [ $stage -le -1 ]; then # Get the gselect (Gaussian selection) info for fMPE. # Note: fMPE object starts with GMM object, so can be read # as one. $cmd JOB=1:$nj $dir/log/gselect.JOB.log \ gmm-gselect --n=$ngselect $dir/0.fmpe "$feats" \ "ark:|gzip -c >$dir/gselect.JOB.gz" || exit 1; fi cp $alidir/final.mdl $dir/0.mdl x=0 num_iters=`echo $schedule | wc -w` while [ $x -lt $num_iters ]; do iter_type=`echo $schedule | cut -d ' ' -f $[$x+1]` case $iter_type in fmmi) echo "Iteration $x: doing fMMI" if [ $stage -le $x ]; then numpost="ark,s,cs:gunzip -c $alidir/ali.JOB.gz| ali-to-post ark:- ark:-|" # Note: the command gmm-fmpe-acc-stats below requires the pre-fMPE features. $cmd JOB=1:$nj $dir/log/acc_fmmi.$x.JOB.log \ gmm-rescore-lattice $dir/$x.mdl "$lats" "$fmpefeats" ark:- \| \ lattice-to-post --acoustic-scale=$acwt ark:- ark:- \| \ sum-post --zero-if-disjoint=$zero_if_disjoint --scale1=-1 ark:- "$numpost" ark:- \| \ gmm-fmpe-acc-stats $dir/$x.mdl $dir/$x.fmpe "$feats" \ "ark,s,cs:gunzip -c $dir/gselect.JOB.gz|" ark,s,cs:- \ $dir/$x.JOB.fmpe_acc || exit 1; ( fmpe-sum-accs $dir/$x.fmpe_acc $dir/$x.*.fmpe_acc && \ rm $dir/$x.*.fmpe_acc && \ fmpe-est --learning-rate=$learning_rate $dir/$x.fmpe $dir/$x.fmpe_acc $dir/$[$x+1].fmpe ) \ 2>$dir/log/est_fmpe.$x.log || exit 1; fi # We need to set the features to use the correct fMPE object. fmpefeats="$feats fmpe-apply-transform $dir/$[$x+1].fmpe ark:- 'ark,s,cs:gunzip -c $dir/gselect.JOB.gz|' ark:- |" rm $dir/$[x+1].mdl 2>/dev/null; ln -s $x.mdl $dir/$[$x+1].mdl # link previous model. # Now, diagnostics. objf_nf=`grep Overall $dir/log/acc_fmmi.$x.*.log | grep gmm-fmpe-acc-stats | awk '{ p+=$10*$12; nf+=$12; } END{print p/nf, nf;}'` objf=`echo $objf_nf | awk '{print $1}'`; nf=`echo $objf_nf | awk '{print $2}'`; impr=`grep Objf $dir/log/est_fmpe.$x.log | awk '{print $NF}'` impr=`perl -e "print ($impr/$nf);"` # normalize by #frames. echo On iter $x, objf was $objf, auxf improvement from fMMI was $impr | tee $dir/objf.$x.log ;; mmi) # MMI iteration. echo "Iteration $x: doing MMI (getting stats)..." # Get denominator stats... For simplicity we rescore the lattice # on all iterations, even though it shouldn't be necessary on the zeroth # (but we want this script to work even if $alidir doesn't contain the # model used to generate the lattice). if [ $stage -le $x ]; then $cmd JOB=1:$nj $dir/log/acc.$x.JOB.log \ gmm-rescore-lattice $dir/$x.mdl "$lats" "$fmpefeats" ark:- \| \ lattice-to-post --acoustic-scale=$acwt ark:- ark:- \| \ sum-post --zero-if-disjoint=$zero_if_disjoint --merge=$cancel --scale1=-1 \ ark:- "ark,s,cs:gunzip -c $alidir/ali.JOB.gz | ali-to-post ark:- ark:- |" ark:- \| \ gmm-acc-stats2 $dir/$x.mdl "$fmpefeats" ark,s,cs:- \ $dir/num_acc.$x.JOB.acc $dir/den_acc.$x.JOB.acc || exit 1; n=`echo $dir/{num,den}_acc.$x.*.acc | wc -w`; [ "$n" -ne $[$nj*2] ] && \ echo "Wrong number of MMI accumulators $n versus 2*$nj" && exit 1; $cmd $dir/log/den_acc_sum.$x.log \ gmm-sum-accs $dir/den_acc.$x.acc $dir/den_acc.$x.*.acc || exit 1; rm $dir/den_acc.$x.*.acc $cmd $dir/log/num_acc_sum.$x.log \ gmm-sum-accs $dir/num_acc.$x.acc $dir/num_acc.$x.*.acc || exit 1; rm $dir/num_acc.$x.*.acc # note: this tau value is for smoothing to model parameters; # you need to use gmm-ismooth-stats to smooth to the ML stats, # but anyway this script does canceling of num and den stats on # each frame (as suggested in the Boosted MMI paper) which would # make smoothing to ML impossible without accumulating extra stats. $cmd $dir/log/update.$x.log \ gmm-est-gaussians-ebw --tau=$tau $dir/$x.mdl $dir/num_acc.$x.acc $dir/den_acc.$x.acc - \| \ gmm-est-weights-ebw --weight-tau=$weight_tau - $dir/num_acc.$x.acc $dir/den_acc.$x.acc $dir/$[$x+1].mdl || exit 1; else echo "not doing this iteration because --stage=$stage" fi # Some diagnostics.. note, this objf is somewhat comparable to the # MMI objective function divided by the acoustic weight, and differences in it # are comparable to the auxf improvement printed by the update program. objf_nf=`grep Overall $dir/log/acc.$x.*.log | grep gmm-acc-stats2 | awk '{ p+=$10*$12; nf+=$12; } END{print p/nf, nf;}'` objf=`echo $objf_nf | awk '{print $1}'`; nf=`echo $objf_nf | awk '{print $2}'`; impr=`grep -w Overall $dir/log/update.$x.log | awk '{x += $10*$12;} END{print x;}'` impr=`perl -e "print ($impr/$nf);"` # renormalize by "real" #frames, to correct # for the canceling of stats. echo On iter $x, objf was $objf, auxf improvement was $impr | tee $dir/objf.$x.log rm $dir/$[x+1].fmpe 2>/dev/null; ln -s $x.fmpe $dir/$[$x+1].fmpe # link previous fMPE transform ;; *) echo "Invalid --schedule option: expected only mmi or fmmi."; esac x=$[$x+1] done echo "Succeeded with $num_iters iters iterations of MMI+fMMI training (boosting factor = $boost)" rm $dir/final.mdl 2>/dev/null; ln -s $num_iters.mdl $dir/final.mdl rm $dir/final.fmpe 2>/dev/null; ln -s $num_iters.fmpe $dir/final.fmpe # Now do some cleanup. rm $dir/gselect.*.gz $dir/*.acc $dir/*.fmpe_acc exit 0; |