Blame view
Scripts/steps/.svn/text-base/train_nnet_scheduler.sh.svn-base
5.54 KB
ec85f8892 first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
#!/bin/bash # Copyright 2012 Karel Vesely (Brno University of Technology) # Apache 2.0 # Train neural network # Begin configuration. # training options learn_rate=0.008 momentum=0 l1_penalty=0 l2_penalty=0 # data processing bunch_size=256 cache_size=16384 seed=777 feature_transform= # learn rate scheduling max_iters=20 min_iters= start_halving_inc=0.5 end_halving_inc=0.1 halving_factor=0.5 # misc. verbose=1 # gpu use_gpu_id= # tool train_tool="nnet-train-xent-hardlab-frmshuff" # End configuration. echo "$0 $@" # Print the command line for logging [ -f path.sh ] && . ./path.sh; . parse_options.sh || exit 1; if [ $# != 5 ]; then echo "Usage: $0 <mlp-init> <feats-tr> <feats-cv> <labels> <exp-dir>" echo " e.g.: $0 0.nnet scp:train.scp scp:cv.scp ark:labels.ark exp/dnn1" echo "main options (for others, see top of script file)" echo " --config <config-file> # config containing options" exit 1; fi mlp_init=$1 feats_tr=$2 feats_cv=$3 labels=$4 dir=$5 [ ! -d $dir ] && mkdir $dir [ ! -d $dir/log ] && mkdir $dir/log [ ! -d $dir/nnet ] && mkdir $dir/nnet # Skip training [ -e $dir/final.nnet ] && echo "'$dir/final.nnet' exists, skipping training" && exit 0 ############################## #start training #choose mlp to start with mlp_best=$mlp_init mlp_base=${mlp_init##*/}; mlp_base=${mlp_base%.*} #optionally resume training from the best epoch [ -e $dir/.mlp_best ] && mlp_best=$(cat $dir/.mlp_best) [ -e $dir/.learn_rate ] && learn_rate=$(cat $dir/.learn_rate) #prerun cross-validation $train_tool --cross-validate=true \ --bunchsize=$bunch_size --cachesize=$cache_size --verbose=$verbose \ ${feature_transform:+ --feature-transform=$feature_transform} \ ${use_gpu_id:+ --use-gpu-id=$use_gpu_id} \ $mlp_best "$feats_cv" "$labels" \ 2> $dir/log/prerun.log || exit 1; acc=$(cat $dir/log/prerun.log | awk '/FRAME_ACCURACY/{ acc=$3; sub(/%/,"",acc); } END{print acc}') xent=$(cat $dir/log/prerun.log | awk 'BEGIN{FS=":"} /err\/frm:/{ xent = $NF; } END{print xent}') echo "CROSSVAL PRERUN ACCURACY $(printf "%.2f" $acc) (avg.xent$(printf "%.4f" $xent)), " #resume lr-halving halving=0 [ -e $dir/.halving ] && halving=$(cat $dir/.halving) #training for iter in $(seq -w $max_iters); do echo -n "ITERATION $iter: " mlp_next=$dir/nnet/${mlp_base}_iter${iter} #skip iteration if already done [ -e $dir/.done_iter$iter ] && echo -n "skipping... " && ls $mlp_next* && continue #training $train_tool \ --learn-rate=$learn_rate --momentum=$momentum --l1-penalty=$l1_penalty --l2-penalty=$l2_penalty \ --bunchsize=$bunch_size --cachesize=$cache_size --randomize=true --verbose=$verbose \ ${feature_transform:+ --feature-transform=$feature_transform} \ ${use_gpu_id:+ --use-gpu-id=$use_gpu_id} \ ${seed:+ --seed=$seed} \ $mlp_best "$feats_tr" "$labels" $mlp_next \ 2> $dir/log/iter$iter.log || exit 1; tr_acc=$(cat $dir/log/iter$iter.log | awk '/FRAME_ACCURACY/{ acc=$3; sub(/%/,"",acc); } END{print acc}') tr_xent=$(cat $dir/log/iter$iter.log | awk 'BEGIN{FS=":"} /err\/frm:/{ xent = $NF; } END{print xent}') echo -n "TRAIN ACCURACY $(printf "%.2f" $tr_acc) (avg.xent$(printf "%.4f" $tr_xent),lrate$(printf "%.6g" $learn_rate)), " #cross-validation $train_tool --cross-validate=true \ --bunchsize=$bunch_size --cachesize=$cache_size --verbose=$verbose \ ${feature_transform:+ --feature-transform=$feature_transform} \ ${use_gpu_id:+ --use-gpu-id=$use_gpu_id} \ $mlp_next "$feats_cv" "$labels" \ 2>>$dir/log/iter$iter.log || exit 1; acc_new=$(cat $dir/log/iter$iter.log | awk '/FRAME_ACCURACY/{ acc=$3; sub(/%/,"",acc); } END{print acc}') xent_new=$(cat $dir/log/iter$iter.log | awk 'BEGIN{FS=":"} /err\/frm:/{ xent = $NF; } END{print xent}') echo -n "CROSSVAL ACCURACY $(printf "%.2f" $acc_new) (avg.xent$(printf "%.4f" $xent_new)), " #accept or reject new parameters (based no per-frame accuracy) acc_prev=$acc if [ "1" == "$(awk "BEGIN{print($acc_new>$acc);}")" ]; then acc=$acc_new mlp_best=$dir/nnet/${mlp_base}_iter${iter}_learnrate${learn_rate}_tr$(printf "%.2f" $tr_acc)_cv$(printf "%.2f" $acc_new) mv $mlp_next $mlp_best echo "nnet accepted ($(basename $mlp_best))" echo $mlp_best > $dir/.mlp_best else mlp_reject=$dir/nnet/${mlp_base}_iter${iter}_learnrate${learn_rate}_tr$(printf "%.2f" $tr_acc)_cv$(printf "%.2f" $acc_new)_rejected mv $mlp_next $mlp_reject echo "nnet rejected ($(basename $mlp_reject))" fi #create .done file as a mark that iteration is over touch $dir/.done_iter$iter #stopping criterion if [[ "1" == "$halving" && "1" == "$(awk "BEGIN{print($acc < $acc_prev+$end_halving_inc)}")" ]]; then if [[ "$min_iters" != "" ]]; then if [ $min_iters -gt $iter ]; then echo we were supposed to finish, but we continue, min_iters : $min_iters continue fi fi echo finished, too small improvement $(awk "BEGIN{print($acc-$acc_prev)}") break fi #start annealing when improvement is low if [ "1" == "$(awk "BEGIN{print($acc < $acc_prev+$start_halving_inc)}")" ]; then halving=1 echo $halving >$dir/.halving fi #do annealing if [ "1" == "$halving" ]; then learn_rate=$(awk "BEGIN{print($learn_rate*$halving_factor)}") echo $learn_rate >$dir/.learn_rate fi done #select the best network if [ $mlp_best != $mlp_init ]; then mlp_final=${mlp_best}_final_ ( cd $dir/nnet; ln -s $(basename $mlp_best) $(basename $mlp_final); ) ( cd $dir; ln -s nnet/$(basename $mlp_final) final.nnet; ) echo "Succeeded training the Neural Network : $dir/final.nnet" else "Error training neural network..." exit 1 fi |