Blame view
Scripts/steps/tandem/.svn/text-base/align_si.sh.svn-base
4.64 KB
ec85f8892 first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
#!/bin/bash # Copyright 2012 Johns Hopkins University (Author: Daniel Povey) # Korbinian Riedhammer # Apache 2.0 # Computes training alignments using a model with delta or # LDA+MLLT features. # If you supply the "--use-graphs true" option, it will use the training # graphs from the source directory (where the model is). In this # case the number of jobs must match with the source directory. # Begin configuration section. nj=4 cmd=run.pl use_graphs=false # Begin configuration. scale_opts="--transition-scale=1.0 --acoustic-scale=0.1 --self-loop-scale=0.1" beam=10 retry_beam=40 boost_silence=1.0 # Factor by which to boost silence during alignment. # End configuration options. echo "$0 $@" # Print the command line for logging [ -f path.sh ] && . ./path.sh # source the path. . parse_options.sh || exit 1; if [ $# != 5 ]; then echo "usage: steps/tandem/align_si.sh <data1-dir> <data2-dir> <lang-dir> <src-dir> <align-dir>" echo "e.g.: steps/tandem/align_si.sh {mfcc,bottleneck}/data/train data/lang exp/tri1 exp/tri1_ali" echo "main options (for others, see top of script file)" echo " --config <config-file> # config containing options" echo " --nj <nj> # number of parallel jobs" echo " --use-graphs true # use graphs in src-dir" echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs." exit 1; fi data1=$1 data2=$2 lang=$3 srcdir=$4 dir=$5 oov=`cat $lang/oov.int` || exit 1; mkdir -p $dir/log echo $nj > $dir/num_jobs # Set up the features sdata1=$data1/split$nj sdata2=$data2/split$nj [[ -d $sdata1 && $data1/feats.scp -ot $sdata1 ]] || split_data.sh $data1 $nj || exit 1; [[ -d $sdata2 && $data2/feats.scp -ot $sdata2 ]] || split_data.sh $data2 $nj || exit 1; cp $srcdir/{tree,final.mdl} $dir || exit 1; cp $srcdir/final.occs $dir; # Get some info on the feature types splice_opts=`cat $srcdir/splice_opts 2>/dev/null` # frame-splicing options. normft2=`cat $srcdir/normft2 2>/dev/null` || exit 1; if [ -f $srcdir/final.mat ]; then feat_type=lda; else feat_type=delta; fi # for lda-type features, we need to copy both the lda (for baseft) and mllt # transformation (for the pasted features) case $feat_type in delta) echo "$0: feature type is $feat_type" ;; lda) echo "$0: feature type is $feat_type" cp $srcdir/{lda,final}.mat $dir/ || exit 1; ;; *) echo "$0: invalid feature type $feat_type" && exit 1; esac # set up feature stream 1; this are usually spectral features, so we will add # deltas or splice them feats1="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata1/JOB/utt2spk scp:$sdata1/JOB/cmvn.scp scp:$sdata1/JOB/feats.scp ark:- |" if [ "$feat_type" == "delta" ]; then feats1="$feats1 add-deltas ark:- ark:- |" elif [ "$feat_type" == "lda" ]; then feats1="$feats1 splice-feats $splice_opts ark:- ark:- | transform-feats $dir/lda.mat ark:- ark:- |" fi # set up feature stream 2; this are usually bottleneck or posterior features, # which may be normalized if desired feats2="scp:$sdata2/JOB/feats.scp" if [ "$normft2" == "true" ]; then feats2="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata2/JOB/utt2spk scp:$sdata2/JOB/cmvn.scp $feats2 ark:- |" fi # assemble tandem features feats="ark,s,cs:paste-feats '$feats1' '$feats2' ark:- |" # add transformation, if applicable if [ "$feat_type" == "lda" ]; then feats="$feats transform-feats $dir/final.mat ark:- ark:- |" fi # splicing/normalization options cp $srcdir/{tandem,splice_opts,normft2} $dir 2>/dev/null echo "$0: aligning data in $data using model from $srcdir, putting alignments in $dir" mdl="gmm-boost-silence --boost=$boost_silence `cat $lang/phones/optional_silence.csl` $dir/final.mdl - |" if $use_graphs; then [ $nj != "`cat $srcdir/num_jobs`" ] && echo "$0: mismatch in num-jobs" && exit 1; [ ! -f $srcdir/fsts.1.gz ] && echo "$0: no such file $srcdir/fsts.1.gz" && exit 1; $cmd JOB=1:$nj $dir/log/align.JOB.log \ gmm-align-compiled $scale_opts --beam=$beam --retry-beam=$retry_beam "$mdl" \ "ark:gunzip -c $srcdir/fsts.JOB.gz|" "$feats" "ark:|gzip -c >$dir/ali.JOB.gz" || exit 1; else tra="ark:utils/sym2int.pl --map-oov $oov -f 2- $lang/words.txt $sdata1/JOB/text|"; # We could just use gmm-align in the next line, but it's less efficient as it compiles the # training graphs one by one. $cmd JOB=1:$nj $dir/log/align.JOB.log \ compile-train-graphs $dir/tree $dir/final.mdl $lang/L.fst "$tra" ark:- \| \ gmm-align-compiled $scale_opts --beam=$beam --retry-beam=$retry_beam "$mdl" ark:- \ "$feats" "ark,t:|gzip -c >$dir/ali.JOB.gz" || exit 1; fi echo "$0: done aligning data." |