Blame view
Scripts/utils/nnet/.svn/text-base/gen_mlp_init.py.svn-base
3.2 KB
ec85f8892 first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
#!/usr/bin/python -u # ./gen_mlp_init.py # script generateing NN initialization # # author: Karel Vesely # import math, random import sys from optparse import OptionParser parser = OptionParser() parser.add_option('--dim', dest='dim', help='d1:d2:d3 layer dimensions in the network') parser.add_option('--gauss', dest='gauss', help='use gaussian noise for weights', action='store_true', default=False) parser.add_option('--negbias', dest='negbias', help='use uniform [-4.1,-3.9] for bias (defaultall 0.0)', action='store_true', default=False) parser.add_option('--inputscale', dest='inputscale', help='scale the weights by 3/sqrt(Ninputs)', action='store_true', default=False) parser.add_option('--normalized', dest='normalized', help='Generate normalized weights according to X.Glorot paper, U[-x,x] x=sqrt(6)/(sqrt(dim_in+dim_out))', action='store_true', default=False) parser.add_option('--activation', dest='activation', help='activation type tag (def. <sigmoid>)', default='<sigmoid>') parser.add_option('--linBNdim', dest='linBNdim', help='dim of linear bottleneck (sigmoids will be omitted, bias will be zero)',default=0) parser.add_option('--linOutput', dest='linOutput', help='generate MLP with linear output', action='store_true', default=False) parser.add_option('--seed', dest='seedval', help='seed for random generator',default=0) (options, args) = parser.parse_args() if(options.dim == None): parser.print_help() sys.exit(1) #seeding seedval=int(options.seedval) if(seedval != 0): random.seed(seedval) dimStrL = options.dim.split(':') dimL = [] for i in range(len(dimStrL)): dimL.append(int(dimStrL[i])) #print dimL,'linBN',options.linBNdim for layer in range(len(dimL)-1): print '<affinetransform>', dimL[layer+1], dimL[layer] #precompute... nomalized_interval = math.sqrt(6.0) / math.sqrt(dimL[layer+1]+dimL[layer]) #weight matrix print '[' for row in range(dimL[layer+1]): for col in range(dimL[layer]): if(options.normalized): print random.random()*2.0*nomalized_interval - nomalized_interval, elif(options.gauss): if(options.inputscale): print 3/math.sqrt(dimL[layer])*random.gauss(0.0,1.0), else: print 0.1*random.gauss(0.0,1.0), else: if(options.inputscale): print (random.random()-0.5)*2*3/math.sqrt(dimL[layer]), else: print random.random()/5.0-0.1, print #newline for each row print ']' #bias vector print '[', for idx in range(dimL[layer+1]): if(int(options.linBNdim) == dimL[layer+1]): print '0.0', elif(layer == len(dimL)-2):#last layer (softmax) print '0.0', elif(options.negbias): print random.random()/5.0-4.1, else: print '0.0', print ']' if(int(options.linBNdim) != dimL[layer+1]): if(layer == len(dimL)-2): if(not(options.linOutput)) : print '<softmax>', dimL[layer+1], dimL[layer+1] else: #print '<sigmoid>', dimL[layer+1], dimL[layer+1] print options.activation, dimL[layer+1], dimL[layer+1] |