Blame view
Scripts/utils/nnet/.svn/text-base/init_nnet.sh.svn-base
4.7 KB
ec85f8892 first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
#!/bin/bash # Copyright 2012 Karel Vesely (Brno University of Technology) # Apache 2.0 # Initialize neural network # Begin configuration. model_size=8000000 # nr. of parameteres in MLP hid_layers=4 # nr. of hidden layers (prior to sotfmax or bottleneck) bn_dim= # set value to get a bottleneck network hid_dim= # set value to override the $model_size seed=777 # seed for the initialization init_opts="--gauss --negbias" # End configuration. echo "$0 $@" # Print the command line for logging [ -f path.sh ] && . ./path.sh; . parse_options.sh || exit 1; if [ $# != 3 ]; then echo "Usage: $0 <in-dim> <out-dim> <nnet-init>" echo " e.g.: $0 400 3000 nnet.init" echo "main options (for others, see top of script file)" echo " --config <config-file> # config containing options" echo " --model-size <N> # number of weights in the nnet" echo " --hid-layers <N> # number of hidden layers" echo " --bn-dim <N> # dim of linear bottleneck" echo " --hid-dim <N> # dim of hidden layers (overrides --model-size)" exit 1; fi in_dim=$1 out_dim=$2 nnet_out=$3 dir=$(dirname $nnet_out) ### ### What is the topology? Straight or bottleneck? ### if [ -z "$bn_dim" ]; then #MLP w/o bottleneck case "$hid_layers" in 0) #just logistic regresion mlp_init=$dir/nnet_${in_dim}_${out_dim}.init echo "Initializing MLP : $mlp_init" utils/nnet/gen_mlp_init.py --dim=${in_dim}:${out_dim} \ ${init_opts} --seed=$seed > $mlp_init || exit 1; ;; 1) #MLP with one hidden layer if [ -z "$hid_dim" ]; then hid_dim=$((model_size/(in_dim+out_dim))) fi mlp_init=$dir/nnet_${in_dim}_${hid_dim}_${out_dim}.init echo "Initializing MLP : $mlp_init" utils/nnet/gen_mlp_init.py --dim=${in_dim}:${hid_dim}:${out_dim} \ ${init_opts} --seed=$seed > $mlp_init || exit 1; ;; 2|3|4|5|6|7|8|9|10) #MLP with more than 1 hidden layer if [ -z "$hid_dim" ]; then a=$((hid_layers-1)) b=$((in_dim+out_dim)) c=$((-model_size)) hid_dim=$(awk "BEGIN{ hid_dim= -$b/(2*$a) + sqrt($b^2 -4*$a*$c)/(2*$a); print int(hid_dim) }") fi #build the mlp name mlp_init and dim argument dim_arg mlp_init= dim_arg= { mlp_init=$dir/nnet_${in_dim} dim_arg=${in_dim} for i in $(seq $hid_layers); do mlp_init=${mlp_init}_$hid_dim dim_arg=${dim_arg}:${hid_dim} done mlp_init=${mlp_init}_${out_dim}.init dim_arg=${dim_arg}:${out_dim} } echo "Initializing MLP : $mlp_init" utils/nnet/gen_mlp_init.py --dim=${dim_arg} ${init_opts} \ --seed=$seed > $mlp_init || exit 1; ;; *) echo "Unsupported number of hidden layers $hid_layers" exit 1; esac else #MLP with bottleneck bn_dim=$bn_dim case "$hid_layers" in # ie. number of layers in front of bottleneck 1) #1-hidden layer in front of the bottleneck if [ -z "$hid_dim" ]; then hid_dim=$((model_size/(in_dim+out_dim+(2*bn_dim)))) fi mlp_init=$dir/nnet_${in_dim}_${hid_dim}_${bn_dim}_${hid_dim}_${out_dim}.init echo "Initializing MLP : $mlp_init" utils/nnet/gen_mlp_init.py --dim=${in_dim}:${hid_dim}:${bn_dim}:${hid_dim}:${out_dim} \ ${init_opts} --seed=$seed --linBNdim=$bn_dim > $mlp_init || exit 1; ;; 2|3|4|5|6|7|8|9|10) #more than 1 hidden layer in front of bottleneck if [ -z "$hid_dim" ]; then a=$((hid_layers-1)) b=$((in_dim+2*bn_dim+out_dim)) c=$((-model_size)) hid_dim=$(awk "BEGIN{ hid_dim= -$b/(2*$a) + sqrt($b^2 -4*$a*$c)/(2*$a); print int(hid_dim) }") fi #build the nnet name mlp_init and dim agument dim_arg mlp_init= dim_arg= { mlp_init=$dir/nnet_${in_dim} dim_arg=${in_dim} for i in $(seq $hid_layers); do mlp_init=${mlp_init}_$hid_dim dim_arg=${dim_arg}:${hid_dim} done mlp_init=${mlp_init}_${bn_dim}lin_${hid_dim}_${out_dim}.init dim_arg=${dim_arg}:${bn_dim}:${hid_dim}:${out_dim} } echo "Initializing MLP : $mlp_init" utils/nnet/gen_mlp_init.py --dim=${dim_arg} ${init_opts} \ --seed=$seed --linBNdim=$bn_dim > $mlp_init || exit 1; ;; *) echo "Unsupported number of hidden layers $hid_layers" exit 1; esac fi #The output name same as the mlp name, we are done.. [ $nnet_out == $mlp_init ] && "Successfuly created '$nnet_out'" && exit 0; #Or we need to link the destination file #(we want to keep the name showing the topology) ([ -f $nnet_out ] && unlink $nnet_out; cd $dir; ln -s $(basename $mlp_init) $(basename $nnet_out)) echo "Successfuly created linked '$nnet_out'" |