Blame view

Scripts/utils/nnet/gen_rbm_init.py 3.2 KB
ec85f8892   bigot benjamin   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
  #!/usr/bin/python -u
  
  # egs/wsj/s2/scripts/gen_rbm_init.py
  #
  # Copyright 2012  Karel Vesely
  #
  # Initializes the RBM Neural Network
  #
  # calling example:
  # python gen_mlp_init.py --dimIn=598 --dimOut=135 --dimHid=1024:1024:1024 
  #
  
  import math, random
  import sys
  
  
  from optparse import OptionParser
  
  parser = OptionParser()
  parser.add_option('--dim', dest='dim', help='d1:d2 layer dimensions in the network')
  parser.add_option('--gauss', dest='gauss', help='use gaussian noise for weights', action='store_true', default=False)
  parser.add_option('--gauss-scale', dest='gauss_scale', help='standard deviation of the gaussain noise', default='0.1')
  parser.add_option('--negbias', dest='negbias', help='use uniform [-4.1,-3.9] for bias (default all 0.0)', action='store_true', default=False)
  parser.add_option('--hidtype', dest='hidtype', help='gauss/bern', default='bern')
  parser.add_option('--vistype', dest='vistype', help='gauss/bern', default='bern')
  parser.add_option('--cmvn-nnet', dest='cmvn_nnet', help='cmvn_nnet to parse mean activation used in visible bias initialization', default='')
  
  
  (options, args) = parser.parse_args()
  
  if(options.dim == None):
      parser.print_help()
      sys.exit(1)
  
  
  dimStrL = options.dim.split(':')
  assert(len(dimStrL) == 2) #only single layer to initialize
  dimL = []
  for i in range(len(dimStrL)):
      dimL.append(int(dimStrL[i]))
  
  gauss_scale=float(options.gauss_scale)
  
  #generate RBM
  print '<rbm>', dimL[1], dimL[0]
  print options.vistype, options.hidtype
  
  
  #init weight matrix
  print '['
  for row in range(dimL[1]):
      for col in range(dimL[0]):
          if(options.gauss):
              print gauss_scale * random.gauss(0.0,1.0),
          else:
              print (random.random()-0.5)/5.0, 
      print
  print ']'
  
  #init visbias
  if len(options.cmvn_nnet)>0:
      ### use the formula log(p/(1-p) for visible biases, where p is mean activity of the neuron
      f = open(options.cmvn_nnet)
      #make sure file starts by <addshift>
      line = f.readline()
      arr = line.split(' ')
      if arr[0] != '<addshift>':
          raise Exception('missing <addshift> in '+options.cmvn_nnet)
      #get the p's
      line = f.readline()
      arr = line.strip().split(' ')
      assert(len(arr)-2 == dimL[0])
      #print the values
      print '[',
      for i in range(1,len(arr)-1):
          p = -float(arr[i])
          #p must be after sigmoid
          if(not (p >= 0.0 and p <= 1.0)):
              raise Exception('Negative addshifts from '+options.cmvn_nnet+' must be 0..1, ie. the sigmoid outputs')
          #limit the bias to +/- 8, we will modify the p values accordingly
          if(p < 0.00033535):
              p = 0.00033535
          if(p > 0.99966465):
              p = 0.99966465
          #use the inverse sigmoid to get biases from the mean activations
          print math.log(p/(1-p)),
      print ']'
      f.close()
  else:
      print '[',
      for idx in range(dimL[0]):
          if(options.vistype=='gauss'):
              print '0.0',
          elif(options.negbias):
              print random.random()/5.0-4.1,
          else:
              print '0.0',
      print ']'
  
  #init hidbias
  print '[',
  for idx in range(dimL[1]):
      if(options.hidtype=='gauss'):
          print '0.0',
      elif(options.negbias):
          print random.random()/5.0-4.1,
      else:
          print '0.0',
  print ']'