Blame view

Scripts/steps/nnet2/.svn/text-base/align.sh.svn-base 3.87 KB
ec85f8892   bigot benjamin   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
  #!/bin/bash
  # Copyright 2012  Brno University of Technology (Author: Karel Vesely)
  #           2013  Johns Hopkins University (Author: Daniel Povey)
  # Apache 2.0
  
  # Computes training alignments using MLP model
  
  # If you supply the "--use-graphs true" option, it will use the training
  # graphs from the source directory (where the model is).  In this
  # case the number of jobs must match with the source directory.
  
  
  # Begin configuration section.  
  nj=4
  cmd=run.pl
  # Begin configuration.
  scale_opts="--transition-scale=1.0 --acoustic-scale=0.1 --self-loop-scale=0.1"
  beam=10
  retry_beam=40
  transform_dir=
  iter=final
  # End configuration options.
  
  echo "$0 $@"  # Print the command line for logging
  
  [ -f path.sh ] && . ./path.sh # source the path.
  . parse_options.sh || exit 1;
  
  if [ $# != 4 ]; then
     echo "Usage: $0 [--transform-dir <transform-dir>] <data-dir> <lang-dir> <src-dir> <align-dir>"
     echo "e.g.: $0 data/train data/lang exp/nnet4 exp/nnet4_ali"
     echo "main options (for others, see top of script file)"
     echo "  --config <config-file>                           # config containing options"
     echo "  --nj <nj>                                        # number of parallel jobs"
     echo "  --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs."
     exit 1;
  fi
  
  data=$1
  lang=$2
  srcdir=$3
  dir=$4
  
  oov=`cat $lang/oov.int` || exit 1;
  mkdir -p $dir/log
  echo $nj > $dir/num_jobs
  sdata=$data/split$nj
  [[ -d $sdata && $data/feats.scp -ot $sdata ]] || split_data.sh $data $nj || exit 1;
  
  for f in $srcdir/tree $srcdir/${iter}.mdl $data/feats.scp $lang/L.fst; do
    [ ! -f $f ] && echo "$0: no such file $f" && exit 1;
  done
  
  cp $srcdir/{tree,${iter}.mdl} $dir || exit 1;
  
  
  ## Set up features.  Note: these are different from the normal features
  ## because we have one rspecifier that has the features for the entire
  ## training set, not separate ones for each batch.
  if [ -z "$feat_type" ]; then
    if [ -f $srcdir/final.mat ]; then feat_type=lda; else feat_type=raw; fi
  fi
  echo "$0: feature type is $feat_type"
  
  case $feat_type in
    raw) feats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- |"
     ;;
    lda) 
      splice_opts=`cat $srcdir/splice_opts 2>/dev/null`
      cp $srcdir/splice_opts $dir 2>/dev/null
      cp $srcdir/final.mat $dir || exit 1;
      feats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp $sdata/JOB/feats.scp ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $dir/final.mat ark:- ark:- |"
      ;;
    *) echo "$0: invalid feature type $feat_type" && exit 1;
  esac
  if [ ! -z "$transform_dir" ]; then
    if ! [ $nj -eq `cat $transform_dir/num_jobs` ]; then
      echo "$0: Number of jobs mismatch with transform-dir: $nj versus `cat $transform_dir/num_jobs`";
      exit 1;
    fi
    if [ $feat_type == "lda" ]; then
      [ ! -f $transform_dir/raw_trans.1 ] && echo "No such file $transform_dir/raw_trans.1" && exit 1;
      echo "$0: using transforms from $transform_dir"
      feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark:$transform_dir/trans.JOB ark:- ark:- |"
    fi
    if [ $feat_type == "raw" ]; then
      [ ! -f $transform_dir/raw_trans.1 ] && echo "No such file $transform_dir/raw_trans.1" && exit 1;
      echo "$0: using raw-fMLLR transforms from $transform_dir"
      feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark:$transform_dir/raw_trans.JOB ark:- ark:- |"
    fi
  fi
  
  
  echo "$0: aligning data in $data using model from $srcdir, putting alignments in $dir"
  
  tra="ark:utils/sym2int.pl --map-oov $oov -f 2- $lang/words.txt $sdata/JOB/text|";
  
  $cmd JOB=1:$nj $dir/log/align.JOB.log \
    compile-train-graphs $dir/tree $srcdir/${iter}.mdl  $lang/L.fst "$tra" ark:- \| \
    nnet-align-compiled $scale_opts --beam=$beam --retry-beam=$retry_beam $srcdir/${iter}.mdl \
        ark:- "$feats" "ark:|gzip -c >$dir/ali.JOB.gz" || exit 1;
  
  echo "$0: done aligning data."