Blame view
Scripts/steps/nnet2/.svn/text-base/decode.sh.svn-base
5.42 KB
ec85f8892 first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
#!/bin/bash # Copyright 2012-2013 Johns Hopkins University (Author: Daniel Povey). # Apache 2.0. # This script does decoding with a neural-net. If the neural net was built on # top of fMLLR transforms from a conventional system, you should provide the # --transform-dir option. # Begin configuration section. stage=1 transform_dir= # dir to find fMLLR transforms. nj=4 # number of decoding jobs. If --transform-dir set, must match that number! acwt=0.1 # Just a default value, used for adaptation and beam-pruning.. cmd=run.pl beam=15.0 max_active=7000 lat_beam=8.0 # Beam we use in lattice generation. iter=final num_threads=1 # if >1, will use gmm-latgen-faster-parallel parallel_opts= # If you supply num-threads, you should supply this too. scoring_opts= skip_scoring=false feat_type= spk_vecs_dir= # End configuration section. echo "$0 $@" # Print the command line for logging [ -f ./path.sh ] && . ./path.sh; # source the path. . parse_options.sh || exit 1; if [ $# -ne 3 ]; then echo "Usage: $0 [options] <graph-dir> <data-dir> <decode-dir>" echo " e.g.: $0 --transform-dir exp/tri3b/decode_dev93_tgpr \\" echo " exp/tri3b/graph_tgpr data/test_dev93 exp/tri4a_nnet/decode_dev93_tgpr" echo "main options (for others, see top of script file)" echo " --transform-dir <decoding-dir> # directory of previous decoding" echo " # where we can find transforms for SAT systems." echo " --config <config-file> # config containing options" echo " --nj <nj> # number of parallel jobs" echo " --cmd <cmd> # Command to run in parallel with" echo " --beam <beam> # Decoding beam; default 15.0" echo " --iter <iter> # Iteration of model to decode; default is final." echo " --scoring-opts <string> # options to local/score.sh" echo " --num-threads <n> # number of threads to use, default 1." echo " --parallel-opts <opts> # e.g. '-pe smp 4' if you supply --num-threads 4" exit 1; fi graphdir=$1 data=$2 dir=$3 srcdir=`dirname $dir`; # Assume model directory one level up from decoding directory. model=$srcdir/$iter.mdl for f in $graphdir/HCLG.fst $data/feats.scp $model; do [ ! -f $f ] && echo "$0: no such file $f" && exit 1; done sdata=$data/split$nj; splice_opts=`cat $srcdir/splice_opts 2>/dev/null` thread_string= [ $num_threads -gt 1 ] && thread_string="-parallel --num-threads=$num_threads" mkdir -p $dir/log [[ -d $sdata && $data/feats.scp -ot $sdata ]] || split_data.sh $data $nj || exit 1; echo $nj > $dir/num_jobs ## Set up features. if [ -z "$feat_type" ]; then if [ -f $srcdir/final.mat ]; then feat_type=lda; else feat_type=raw; fi echo "$0: feature type is $feat_type" fi case $feat_type in raw) feats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- |";; lda) feats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $srcdir/final.mat ark:- ark:- |" ;; *) echo "$0: invalid feature type $feat_type" && exit 1; esac if [ ! -z "$transform_dir" ]; then echo "$0: using transforms from $transform_dir" if [ "$feat_type" == "lda" ]; then [ ! -f $transform_dir/trans.1 ] && echo "$0: no such file $transform_dir/trans.1" && exit 1; [ "$nj" -ne "`cat $transform_dir/num_jobs`" ] \ && echo "$0: #jobs mismatch with transform-dir." && exit 1; feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark,s,cs:$transform_dir/trans.JOB ark:- ark:- |" else [ ! -f $transform_dir/raw_trans.1 ] && echo "$0: no such file $transform_dir/raw_trans.1" && exit 1; [ "$nj" -ne "`cat $transform_dir/num_jobs`" ] \ && echo "$0: #jobs mismatch with transform-dir." && exit 1; feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark,s,cs:$transform_dir/raw_trans.JOB ark:- ark:- |" fi elif grep 'transform-feats --utt2spk' $srcdir/log/train.1.log >&/dev/null; then echo "$0: **WARNING**: you seem to be using a neural net system trained with transforms," echo " but you are not providing the --transform-dir option in test time." fi ## if [ ! -z $spk_vecs_dir ]; then [ ! -f $spk_vecs_dir/vecs.1 ] && echo "No such file $spk_vecs_dir/vecs.1" && exit 1; spk_vecs_opt=("--spk-vecs=ark:cat $spk_vecs_dir/vecs.*|" "--utt2spk=ark:$data/utt2spk") else spk_vecs_opt=() fi if [ $stage -le 1 ]; then $cmd $parallel_opts JOB=1:$nj $dir/log/decode.JOB.log \ nnet-latgen-faster$thread_string "${spk_vecs_opt[@]}" --max-active=$max_active --beam=$beam \ --lattice-beam=$lat_beam --acoustic-scale=$acwt --allow-partial=true \ --word-symbol-table=$graphdir/words.txt "$model" \ $graphdir/HCLG.fst "$feats" "ark:|gzip -c > $dir/lat.JOB.gz" || exit 1; fi # The output of this script is the files "lat.*.gz"-- we'll rescore this at # different acoustic scales to get the final output. if [ $stage -le 2 ]; then if ! $skip_scoring ; then [ ! -x local/score.sh ] && \ echo "Not scoring because local/score.sh does not exist or not executable." && exit 1; echo "score best paths" local/score.sh $scoring_opts --cmd "$cmd" $data $graphdir $dir echo "score confidence and timing with sclite" fi fi echo "Decoding done." exit 0; |