Blame view
Scripts/steps/nnet2/align.sh
3.87 KB
ec85f8892 first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
#!/bin/bash # Copyright 2012 Brno University of Technology (Author: Karel Vesely) # 2013 Johns Hopkins University (Author: Daniel Povey) # Apache 2.0 # Computes training alignments using MLP model # If you supply the "--use-graphs true" option, it will use the training # graphs from the source directory (where the model is). In this # case the number of jobs must match with the source directory. # Begin configuration section. nj=4 cmd=run.pl # Begin configuration. scale_opts="--transition-scale=1.0 --acoustic-scale=0.1 --self-loop-scale=0.1" beam=10 retry_beam=40 transform_dir= iter=final # End configuration options. echo "$0 $@" # Print the command line for logging [ -f path.sh ] && . ./path.sh # source the path. . parse_options.sh || exit 1; if [ $# != 4 ]; then echo "Usage: $0 [--transform-dir <transform-dir>] <data-dir> <lang-dir> <src-dir> <align-dir>" echo "e.g.: $0 data/train data/lang exp/nnet4 exp/nnet4_ali" echo "main options (for others, see top of script file)" echo " --config <config-file> # config containing options" echo " --nj <nj> # number of parallel jobs" echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs." exit 1; fi data=$1 lang=$2 srcdir=$3 dir=$4 oov=`cat $lang/oov.int` || exit 1; mkdir -p $dir/log echo $nj > $dir/num_jobs sdata=$data/split$nj [[ -d $sdata && $data/feats.scp -ot $sdata ]] || split_data.sh $data $nj || exit 1; for f in $srcdir/tree $srcdir/${iter}.mdl $data/feats.scp $lang/L.fst; do [ ! -f $f ] && echo "$0: no such file $f" && exit 1; done cp $srcdir/{tree,${iter}.mdl} $dir || exit 1; ## Set up features. Note: these are different from the normal features ## because we have one rspecifier that has the features for the entire ## training set, not separate ones for each batch. if [ -z "$feat_type" ]; then if [ -f $srcdir/final.mat ]; then feat_type=lda; else feat_type=raw; fi fi echo "$0: feature type is $feat_type" case $feat_type in raw) feats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- |" ;; lda) splice_opts=`cat $srcdir/splice_opts 2>/dev/null` cp $srcdir/splice_opts $dir 2>/dev/null cp $srcdir/final.mat $dir || exit 1; feats="ark,s,cs:apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp $sdata/JOB/feats.scp ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $dir/final.mat ark:- ark:- |" ;; *) echo "$0: invalid feature type $feat_type" && exit 1; esac if [ ! -z "$transform_dir" ]; then if ! [ $nj -eq `cat $transform_dir/num_jobs` ]; then echo "$0: Number of jobs mismatch with transform-dir: $nj versus `cat $transform_dir/num_jobs`"; exit 1; fi if [ $feat_type == "lda" ]; then [ ! -f $transform_dir/raw_trans.1 ] && echo "No such file $transform_dir/raw_trans.1" && exit 1; echo "$0: using transforms from $transform_dir" feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark:$transform_dir/trans.JOB ark:- ark:- |" fi if [ $feat_type == "raw" ]; then [ ! -f $transform_dir/raw_trans.1 ] && echo "No such file $transform_dir/raw_trans.1" && exit 1; echo "$0: using raw-fMLLR transforms from $transform_dir" feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark:$transform_dir/raw_trans.JOB ark:- ark:- |" fi fi echo "$0: aligning data in $data using model from $srcdir, putting alignments in $dir" tra="ark:utils/sym2int.pl --map-oov $oov -f 2- $lang/words.txt $sdata/JOB/text|"; $cmd JOB=1:$nj $dir/log/align.JOB.log \ compile-train-graphs $dir/tree $srcdir/${iter}.mdl $lang/L.fst "$tra" ark:- \| \ nnet-align-compiled $scale_opts --beam=$beam --retry-beam=$retry_beam $srcdir/${iter}.mdl \ ark:- "$feats" "ark:|gzip -c >$dir/ali.JOB.gz" || exit 1; echo "$0: done aligning data." |