Blame view
Scripts/steps/nnet2/get_lda.sh
5.46 KB
ec85f8892 first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
#!/bin/bash # Copyright 2012 Johns Hopkins University (Author: Daniel Povey). Apache 2.0. # This script, which will generally be called from other neural-net training # scripts, extracts the training examples used to train the neural net (and also # the validation examples used for diagnostics), and puts them in separate archives. # Begin configuration section. cmd=run.pl feat_type= stage=0 splice_width=4 # meaning +- 4 frames on each side for second LDA rand_prune=4.0 # Relates to a speedup we do for LDA. within_class_factor=0.0001 # This affects the scaling of the transform rows... # sorry for no explanation, you'll have to see the code. echo "$0 $@" # Print the command line for logging if [ -f path.sh ]; then . ./path.sh; fi . parse_options.sh || exit 1; if [ $# != 4 ]; then echo "Usage: steps/nnet2/get_lda.sh [opts] <data> <lang> <ali-dir> <exp-dir>" echo " e.g.: steps/nnet2/get_lda.sh data/train data/lang exp/tri3_ali exp/tri4_nnet" echo " As well as extracting the examples, this script will also do the LDA computation," echo " if --est-lda=true (default:true)" echo "" echo "Main options (for others, see top of script file)" echo " --config <config-file> # config file containing options" echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs." echo " --splice-width <width|4> # Number of frames on each side to append for feature input" echo " # (note: we splice processed, typically 40-dimensional frames" echo " --stage <stage|0> # Used to run a partially-completed training process from somewhere in" echo " # the middle." exit 1; fi data=$1 lang=$2 alidir=$3 dir=$4 # Check some files. for f in $data/feats.scp $lang/L.fst $alidir/ali.1.gz $alidir/final.mdl $alidir/tree; do [ ! -f $f ] && echo "$0: no such file $f" && exit 1; done # Set some variables. oov=`cat $lang/oov.int` num_leaves=`gmm-info $alidir/final.mdl 2>/dev/null | awk '/number of pdfs/{print $NF}'` || exit 1; silphonelist=`cat $lang/phones/silence.csl` || exit 1; nj=`cat $alidir/num_jobs` || exit 1; # number of jobs in alignment dir... # in this dir we'll have just one job. sdata=$data/split$nj utils/split_data.sh $data $nj mkdir -p $dir/log echo $nj > $dir/num_jobs cp $alidir/tree $dir ## Set up features. Note: these are different from the normal features ## because we have one rspecifier that has the features for the entire ## training set, not separate ones for each batch. if [ -z $feat_type ]; then if [ -f $alidir/final.mat ] && ! [ -f $alidir/raw_trans.1 ]; then feat_type=lda; else feat_type=raw; fi fi echo "$0: feature type is $feat_type" case $feat_type in raw) feats="ark,s,cs:utils/filter_scp.pl --exclude $dir/valid_uttlist $sdata/JOB/feats.scp | apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:- ark:- |" train_subset_feats="ark,s,cs:utils/filter_scp.pl $dir/train_subset_uttlist $data/feats.scp | apply-cmvn --norm-vars=false --utt2spk=ark:$data/utt2spk scp:$data/cmvn.scp scp:- ark:- |" ;; lda) splice_opts=`cat $alidir/splice_opts 2>/dev/null` cp $alidir/splice_opts $dir 2>/dev/null cp $alidir/final.mat $dir feats="ark,s,cs:utils/filter_scp.pl --exclude $dir/valid_uttlist $sdata/JOB/feats.scp | apply-cmvn --norm-vars=false --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:- ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $dir/final.mat ark:- ark:- |" train_subset_feats="ark,s,cs:utils/filter_scp.pl $dir/train_subset_uttlist $data/feats.scp | apply-cmvn --norm-vars=false --utt2spk=ark:$data/utt2spk scp:$data/cmvn.scp scp:- ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $dir/final.mat ark:- ark:- |" ;; *) echo "$0: invalid feature type $feat_type" && exit 1; esac if [ -f $alidir/trans.1 ] && [ $feat_type != "raw" ]; then echo "$0: using transforms from $alidir" feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark:$alidir/trans.JOB ark:- ark:- |" train_subset_feats="$train_subset_feats transform-feats --utt2spk=ark:$data/utt2spk 'ark:cat $alidir/trans.*|' ark:- ark:- |" fi if [ -f $alidir/raw_trans.1 ] && [ $feat_type == "raw" ]; then echo "$0: using raw-fMLLR transforms from $alidir" feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark:$alidir/raw_trans.JOB ark:- ark:- |" train_subset_feats="$train_subset_feats transform-feats --utt2spk=ark:$data/utt2spk 'ark:cat $alidir/raw_trans.*|' ark:- ark:- |" fi feat_dim=`feat-to-dim "$train_subset_feats" -` || exit 1; lda_dim=$[$feat_dim*(1+2*($splice_width))]; # No dim reduction. if [ $stage -le 0 ]; then echo "$0: Accumulating LDA statistics." $cmd JOB=1:$nj $dir/log/lda_acc.JOB.log \ ali-to-post "ark:gunzip -c $alidir/ali.JOB.gz|" ark:- \| \ weight-silence-post 0.0 $silphonelist $alidir/final.mdl ark:- ark:- \| \ acc-lda --rand-prune=$rand_prune $alidir/final.mdl "$feats splice-feats --left-context=$splice_width --right-context=$splice_width ark:- ark:- |" ark,s,cs:- \ $dir/lda.JOB.acc || exit 1; fi echo $feat_dim > $dir/feat_dim echo $lda_dim > $dir/lda_dim if [ $stage -le 1 ]; then nnet-get-feature-transform --within-class-factor=$within_class_factor --dim=$lda_dim $dir/lda.mat $dir/lda.*.acc \ 2>$dir/log/lda_est.log || exit 1; rm $dir/lda.*.acc fi echo "$0: Finished estimating LDA" |